已知函数f(x)=ax2+bx+1(a,b为为实数),x∈R.(1)若函数f(x)的最小值是f(-1)=0,求f(x)的解析式;(2)在(1)的条件下,f(x)>x+k在区间[-3,-1]上恒成立,试求k的取值范围;(3)若a>0,f(x)为偶函数,实数m,n满足mn<0,m+n>0,定义函数,试判断F(m)+F(n)值的正负,并说明理由.
如图,四棱锥P-ABCD中,PD⊥底面ABCD,PD=DC=2AD,AD⊥DC,∠BCD=45°. (Ⅰ)设PD的中点为M,求证:AM平面PBC; (Ⅱ)求PA与平面PBC所成角的正切值.
已知数列{}的前n项和 (Ⅰ) 求数列{}的通项公式;(Ⅱ) 设,求数列的前.
已知函数的图象如图所示. (1)求函数的解析式; (2)设,且方程有两个不同的实数根,求实数的取值范围和这两个根的和; (3)在锐角中,若,求的取值范围.
化简 (Ⅰ) (Ⅱ)
若函数 (Ⅰ)求函数的单调递增区间; (Ⅱ)当时,求函数的值域.