(本小题满分14分)已知数列的前项和为,若且.(Ⅰ)求证是等差数列,并求出的表达式;(Ⅱ)若,求证.
(本小题满分12分)定义在上的函数同时满足以下条件:①在上是减函数,在上是增函数;②是偶函数;③在处的切线与直线垂直. (1)求函数的解析式;(2)设,若存在,使,求实数的取值范围.
(本小题满分12分)如图所示,四棱锥中,为正方形, ,分别是线段的中点. 求证:(1)//平面 ; (2)平面⊥平面.
(本小题满分12分)某产品按行业生产标准分成个等级,等级系数依次为,其中为标准,为标准,产品的等级系数越大表明产品的质量越好. 已知某厂执行标准生产该产品,且该厂的产品都符合相应的执行标准.从该厂生产的产品中随机抽取件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7该行业规定产品的等级系数的为一等品,等级系数的为二等品,等级系数的为三等品.(1)试分别估计该厂生产的产品的一等品率、二等品率和三等品率;(2)从样本的一等品中随机抽取2件,求所抽得2件产品等级系数都是8的概率.
(本小题满分12分)已知数列满足,.⑴求证:数列是等比数列,并写出数列的通项公式;⑵若数列满足,求的值.
(本小题满分12分)已知函数.(1)求函数的最小正周期和值域;(2)若为第二象限角,且,求的值.