某学生语、数、英三科考试成绩,在一次考试中排名全班第一的概率:语文为,数学为,英语为,问一次考试中 (Ⅰ)三科成绩均未获得第一名的概率是多少?(Ⅱ)恰有一科成绩未获得第一名的概率是多少
已知点,动点、分别在、轴上运动,满足,为动点,并且满足. (1)求点的轨迹的方程; (2)过点的直线(不与轴垂直)与曲线交于两点,设点,与的夹角为,求证:.
如图,已知直角梯形的上底,,,平面平面,是边长为的等边三角形。(1)证明:;(2)求二面角的大小。(3)求三棱锥的体积。
已知成等差数列.又数列此数列的前n项的和Sn()对所有大于1的正整数n都有.(1)求数列的第n+1项;(2)若的等比中项,且Tn为{bn}的前n项和,求Tn.
某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,遇到红灯时停留的时间都是2min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间的分布列及期望.
已知函数(1)求的最小正周期;(2)若,求的最大值,最小值.