已知定义在R上的函数和数列满足下列条件: , ,其中a为常数,k为非零常数. (Ⅰ)令,证明数列是等比数列; (Ⅱ)求数列的通项公式; (III)当时,求.
某企业生产甲、乙两种产品, 根据市场调查与预测, 甲产品的利润与投资成正比, 其关系如图1, 乙产品的利润与投资的算术平方根成正比, 其关系如图2 (注: 利润与投资的单位: 万元).(Ⅰ) 分别将甲、乙两种产品的利润表示为投资的函数关系式;(Ⅱ) 该企业筹集了100万元资金投入生产甲、乙两种产品, 问: 怎样分配这100万元资金, 才能使企业获得最大利润, 其最大利润为多少万元?
已知数列{an}满足:Sn=1-an(n∈N*),其中Sn为数列{an}的前n项和. (1)求{an}的通项公式;(2)若数列{bn}满足:bn= (n∈N*),求{bn}的前n项和公式Tn.
已知p:|x-4|≤6,q:x2-2x+1-m2≤0(m>0),若p是q的必要而不充分条件,求实数m的取值范围.
已知数列中,,其前项和满足:,令.(1) 求数列的通项公式;(2) 若,求证:;(3) 令,问是否存在正实数同时满足下列两个条件?①对任意,都有;②对任意的,均存在,使得当时总有.若存在,求出所有的; 若不存在,请说明理由.
已知函数图象上一点P(2,f(2))处的切线方程为.(1)求的值;(2) 若方程在内有两个不等实根,求的取值范围(其中为自然对数的底);(3)令,如果图象与轴交于,AB中点为,求证:.