是否存在正方形ABCD,它的对角线AC在直线x+y-2=0上,顶点B、D在抛物线y2=4x上?若存在,试求出正方形的边长;若不存在,试说明理由.
为了对某课题进行研究,用分层抽样方法从三所高校的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人)
(1)求、; (2)若从高校、抽取的人中选2人作专题发言,求这2人都来自高校的概率.
已知向量,函数的最小正周期为. (1)求函数的单调增区间; (2)如果△ABC的三边所对的角分别为,且满足的值.
已知函数,其中. (1)当时,求曲线在原点处的切线方程; (2)求的单调区间; (3)若上存在最大值和最小值,求的取值范围.
已知椭圆,过焦点垂直于长轴的弦长为1,且焦点与短轴两端点构成等边三角形. (1)求椭圆的方程; (2)过点的直线l交椭圆于A,B两点,交直线于点E,判断是否为定值,若是,计算出该定值;不是,说明理由.
设数列为等差数列,且;数列的前n项和为. (1)求数列,的通项公式; (2)若为数学的前n项和,求.