分别在下列两种情况下,把参数方程化为普通方程:(1)为参数,为常数;(2)为参数,为常数;
已知椭圆的离心率为,直线与圆相切. (1)求椭圆的方程; (2)设直线与椭圆的交点为,求弦长.
设命题:实数满足,其中;命题:实数满足. (1)若,且为真,求实数的取值范围; (2)若是成立的必要不充分条件,求实数的取值范围.
已知,,点的坐标为. (1)求当时,点满足的概率; (2)求当时,点满足的概率.
某社团组织20名志愿者利用周末和节假日参加社会公益活动,志愿者中,年龄在20至40岁的有12人,年龄大于40岁的有8人. (1)在志愿者中用分层抽样方法随机抽取5名,年龄大于40岁的应该抽取几名? (2)上述抽取的5名志愿者中任取2名,求取出的2人中恰有1人年龄大于40岁的概率.
已知动直线与椭圆交于、两不同点,且△的面积=,其中为坐标原点. (1)证明和均为定值; (2)设线段的中点为,求的最大值; (3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.