已知a, b, c > 0, 且a2 + b2 = c2,求证:an + bn < cn (n≥3, nÎR*)
已知函数y=cos2x+sinxcosx+1,x∈R. (1)求函数的最小正周期; (2)求函数的单调减区间.
在数列中,,其中,对任意都有:;(1)求数列的第2项和第3项; (2)求数列的通项公式,假设,试求数列的前项和; (3)若对一切恒成立,求的取值范围。
已知数列中,,,数列中,,且点在直线上。 (1)求数列的通项公式; (2)求数列的前项和; (3)若,求数列的前项和;
一支车队有15辆车,某天依次出发执行运输任务,第一辆车于下午2时出发,第二辆车于下午2时10分出发,第三辆车于下午2时20分出发,依此类推。假设所有的司机都连续开车,并都在下午6时停下来休息。 (1)到下午6时最后一辆车行驶了多长时间? (2)如果每辆车的行驶速度都是60,这个车队当天一共行驶了多少千米?
在中,已知,; (1)求的值;(2)若,求的值;