已知椭圆C1的方程为,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点。若直线l:与椭圆C1及双曲线C2恒有两个不同的交点,且l与C2的两个交点A和B满足(其中O为原点),求k的取值范围。
在极坐标系中,求曲线与的交点的极坐标.
已知矩阵,向量.求向量,使得.
已知函数.(1)若函数在区间上有极值,求实数的取值范围;(2)若关于的方程有实数解,求实数的取值范围;(3)当,时,求证:.
已知圆:交轴于两点,曲线是以为长轴,直线:为准线的椭圆.(1)求椭圆的标准方程;(2)若是直线上的任意一点,以为直径的圆与圆相交于两点,求证:直线必过定点,并求出点的坐标;(3)如图所示,若直线与椭圆交于两点,且,试求此时弦的长.
设数列的前n项和为,且满足,n=1,2,3,…….(1)求数列的通项公式;(2)若数列满足,且,求数列的通项公式;(3)设,求数列的前n项和.