已知数列al,a2…,a30,其中al,a2…,a10是首项为1公差为1的等差数列;al0,a11…,a20是公差为d的等差数列;a20,a21…,a30是公差为d2的等差数列(d>0).(Ⅰ)若a20=40,求 d;(Ⅱ)试写出a30关于d的关系式,并求a30的取值范围;(Ⅲ)请依次类推,续写己知数列,把已知数列推广为无穷数列.再提出同(2)类似的问题,并进行研究,你能得到什么样的结论?
在△ABC中,a=3,b=2,∠B=2∠A, (1)求cos A的值; (2)求c的值.
函数f(x)=Asin(ωx-)+1(A>0,ω>0)的最大值为3,其图象相邻两条对称轴之间的距离为. (1)求函数f(x)的解析式; (2)设α∈(0,),f()=2,求α的值.
在△ABC中,∠C=90°,M是BC的中点.若sin∠BAM=,则sin∠BAC=________.
如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明B1C1⊥CE; (2)求二面角B1CEC1的正弦值; (3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
如图所示,PA⊥平面ABC,点C在以AB为直径的⊙O上,∠CBA=30°,PA=AB=2,点E为线段PB的中点,点M在弧AB上,且OM∥AC. (1)求证:平面MOE∥平面PAC. (2)求证:平面PAC⊥平面PCB. (3)设二面角M—BP—C的大小为θ,求cos θ的值.