已知直线交椭圆于、两点,椭圆与轴正半轴交于点,的重心恰好在椭圆的右焦点上,求直线的方程。
已知圆x2+y2+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b对称,求k、b的值;若这时两圆的交点为A、B,求∠AOB的度数.
若动圆C与圆(x-2)2+y2=1外切,且和直线x+1=0相切.求动圆圆心C的轨迹E的方程.
已知圆C:x2+y2-2x+4y-4=0,是否存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆过原点.若存在,求出直线l的方程;若不存在,说明理由
设圆满足(1)y轴截圆所得弦长为2.(2)被x轴分成两段弧,其弧长之比为3∶1,在满足(1)、(2)的所有圆中,求圆心到直线l:x-2y=0的距离最小的圆的方程.
有定点及定直线,是上在第一象限内的点,交轴的正半轴于点,问点在什么位置时,的面积最小,并求出最小值.