设是一个离散型随机变量,其分布列如下表,求值,并求.
分析:根据分布列的两个性质,先确定q的值,当分布列确定时,只须按定义代公式即可.
函数, ⑴求函数的单调区间和极值; ⑵若关于的方程有三个不同的实根,求实数的取值范围
已知f(x)=ax3+bx2+cx(a≠0)在x=±1时取得极值,且f(1)=—1. (1)试求常数a、b、c的值; (2)试判断x=±1是函数的极小值点还是极大值点,并说明理由
圆柱形容器,其底面直径为2m,深度为1 m,盛满液体后以0.01m3/s的速率放出,求液面高度的变化率
已知函数,求的单调区间
设函数对任意实数都有且时。 (Ⅰ)证明是奇函数; (Ⅱ)证明在内是增函数; (Ⅲ)若,试求的取值范围。