(本小题满分13分)已知各项均为正数的数列中,是数列的前项和,对任意,均有 (1).求常数的值;(2)求数列的通项公式;(3).记,求数列的前项和。
已知函数(Ⅰ)求f(x)的最小正周期,并求其图象对称中心的坐标;(Ⅱ)当时,求函数f(x)的值域.
(本小题满分l4分)已知函数f(x)=ax3+bx2-3x在x=±1处取得极值.(1)求函数f(x)的解析式; (2)求证:对于区间[-1,1]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤4;(3)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围.
(本小题满分l2分)已知函数f(x)=a-(1)求证:函数y=f(x)在(0,+∞)上是增函数;(2)若f(x)<2x在(1,+∞)上恒成立,求实数a的取值范围.
(本小题满分l2分)运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,司机的工资是每小时14元.(1)求这次行车总费用y关于x的表达式;(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
(本小题满分l2分)若函数y=为奇函数.(1)求a的值;(2)求函数的定义域;(3)讨论函数的单调性.