在一个圆周上给定十二个红点;求的最小值,使得存在以红点为顶点的个三角形,满足:以红点为端点的每条弦,都是其中某个三角形的一条边.
在 ∆ A B C 中, a = 3 , b = 2 6 , ∠ B = 2 ∠ A . (I)求 cos A 的值, (II)求 c 的值
设不等式 x - 2 < a ( a ∈ N * ) 的解集为A,且 3 2 ∈ A , 1 2 ∉ A .
(Ⅰ)求 a 的值
(Ⅱ)求函数 f ( x ) = x + a + x - 2 的最小值
在直角坐标系中,以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系.已知点 A 的极坐标为 ( 2 , π 4 ) ,直线 l 的极坐标方程为 ρ cos ( θ - π 4 ) = a ,且点 A 在直线 l 上。 (Ⅰ)求 a 的值及直线 l 的直角坐标方程; (Ⅱ)圆 C 的参数方程为 { x = 1 + cos a y = sin a ( a 为参数 ) ,试判断直线 l 与圆 C 的位置关系.
已知直线 l : a x + y = 1 在矩阵 A = 1 2 0 1 对应的变换作用下变为直线 l 1 : x + b y = 1
(I)求实数 a , b 的值 (II)若点 P ( x o , y o ) 在直线 l 上,且 A x o y o = x o y o ,求点 P 的坐标
已知函数 f x = sin ω x + φ ω > 0 , 0 < φ < π 的周期为 π ,图象的一个对称中心为 π 4 , 0 ,将函数 f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个 π 2 单位长度后得到函数 g x 的图象。 (Ⅰ)求函数 f x 与 g x 的解析式 (Ⅱ)是否存在 x 0 ∈ π 6 , π 4 ,使得 f x 0 , g x 0 , f x 0 g x 0 按照某种顺序成等差数列?若存在,请确定 x 0 的个数,若不存在,说明理由; (Ⅲ)求实数 a 与正整数 n ,使得 F x = f x + a g x 在 0 , n π 内恰有2013个零点.