(满分14分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层。某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元。该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=若不建隔热层,每年能源消耗费用为8万元。设为隔热层建造费用与20年的能源消耗费用之和。(1)求的值及的表达式。(2)隔热层修建多厚时,总费用达到最小,并求最小值。
已知双曲线方程为,椭圆C以该双曲线的焦点为顶点,顶点为焦点。 (1)当,时,求椭圆C的方程; (2)在(1)的条件下,直线:与轴交于点P,与椭圆交与A,B两点,若O为坐标原点,与面积之比为2:1,求直线的方程; (3)若,椭圆C与直线:有公共点,求该椭圆的长轴长的最小值。
动圆C的方程为。 (1)若,且直线与圆C交于A,B两点,求弦长; (2)求动圆圆心C的轨迹方程; (3)若直线与动圆圆心C的轨迹有公共点,求的取值范围。
曲线C是平面内与两个定点和的距离的积等于常数 的点的轨迹,给出下列三个结论: ①曲线C过坐标原点; ②曲线C关于坐标原点对称; ③若点P在曲线C上,则△的面积不大于。 其中,所有正确结论的序号为_________。
已知Rt△ABC的顶点坐标A(-3,0),直角顶点B(-1,-),顶点C在轴 上。 (1)求BC边所在直线的方程; (2)圆M为Rt△ABC外接圆,其中M为圆心,求圆M的方程; (3)直线与Rt△ABC外接圆相切于第一象限,求切线与两坐标轴所围成的三角形面 积最小时的切线方程。
已知O为坐标原点,△AOB中,边OA所在的直线方程是,边AB所在的直 线方程是,且顶点B的横坐标为6。 (1)求△AOB中,与边AB平行的中位线所在直线的方程; (2)求△AOB的面积; (3)已知OB上有点D,满足△AOD与△ABD的面积比为2,求AD所在的直线方程。