设函数,,其中,将的最小值记为.(1)求的表达式;(2)讨论在区间内的单调性并求极值.
甲投篮命中率为O.8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?
已知函数在处取得极小值2.(1)求函数的解析式;(2)求函数的极值;(3)设函数,若对于任意,总存在,使得,求实数的取值范围.
已知椭圆过点,且离心率.(1)求椭圆的标准方程;(2)是否存在过点的直线交椭圆于不同的两点M、N,且满足(其中点O为坐标原点),若存在,求出直线的方程,若不存在,请说明理由.
如图所示,在四棱锥中,底面ABCD是边长为a的正方形,侧面底面ABCD,且,若E,F分别为PC,BD的中点.(1)求证:平面PAD;(2)求证:平面PDC平面PAD; (3)求四棱锥的体积.
设函数(1)写出函数的最小正周期及单调递减区间;(2)当时,函数的最大值与最小值的和为,求不等式的解集.