已知点A(-1,6)和B(3,0),在直线AB上求一点P,使||=||.
已知函数(). (1)若函数在处取得极大值,求的值; (2)时,函数图象上的点都在所表示的区域内,求的取值范围; (3)证明:,.
已知椭圆的长轴长是短轴长的两倍,焦距为. (1)求椭圆的标准方程; (2)设不过原点的直线与椭圆交于两点、,且直线、、的斜率依次成等比数列,求△面积的取值范围.
如图,在正三棱柱中,,是的中点,是线段上的动点(与端点不重合),且. (1)若,求证:; (2)若直线与平面所成角的大小为,求的最大值.
各项均为正数的数列前项和为,且. (1)求数列的通项公式; (2)已知公比为的等比数列满足,且存在满足,,求数列的通项公式.
小王参加一次比赛,比赛共设三关,第一、二关各有两个必答题,如果每关两个问题都答对,可进入下一关,第三关有三个问题,只要答对其中两个问题,则闯关成功.每过一关可一次性获得价值分别为1000元,3000元,6000元的奖品(不重复得奖),小王对三关中每个问题回答正确的概率依次为,且每个问题回答正确与否相互独立. (1)求小王过第一关但未过第二关的概率; (2)用X表示小王所获得奖品的价值,写出X的概率分布列,并求X的数学期望.