(12分)已知:函数, (1)求:函数f(x)的定义域; (2)判断函数f(x)的奇偶性并说明理由; (3)判断函数f(x)在()上的单调性,并用定义加以证明。
已知之间满足 (1)方程表示的曲线经过一点,求b的值 (2)动点(x,y)在曲线(b>0)上变化,求x2+2y的最大值; (3)由能否确定一个函数关系式,如能,求解析式;如不能,再加什么条件就可使之间建立函数关系,并求出解析式。 (
下面的一组图形为某一四棱锥S-ABCD的侧面与底面。
(1)请画出四棱锥S-ABCD的示意图,是否存在一条侧棱垂直于底面?如果存在,请给出证明;如果不存在,请说明理由; (2)若SA面ABCD,E为AB中点,求二面角E-SC-D的大小; (3)求点D到面SEC的距离。
上在第一象限内的一点,直线PA、PB分别交椭圆于C、D点,如果D恰 是PB 的中点. (1)求证:无论常数a、b如何,直线CD的斜率恒为定值; (2)求双曲线的离心率,使CD通过椭圆的上焦点.
(1)求此抛物线的方程; (2)若此抛物线方程与直线相交于不同的两点A、B,且AB中点横坐标为2, 求k的值.