斜率为1的直线过抛物线的焦点,与抛物线交于两点A、B将直线AB接向量平移得直线的动点,M为抛物线弧AB上的动点①若,求抛物线方程②求的最大值③求的最小值
已知函数的图象在点处的切线的斜率为,且在处取得极小值。(1)求的解析式;(2)已知函数定义域为实数集,若存在区间,使得在的值域也是,称区间为函数的“保值区间”.①当时,请写出函数的一个“保值区间”(不必证明);②当时,问是否存在“保值区间”?若存在,写出一个“保值区间”并给予证明;若不存在,请说明理由.
某企业生产产品,拟开发新产品,根据市场调查与预测,产品的利润与投资额关系成正比例关系,如图一;若投资产品,至少需要万元,其利润与投资额关系为,如图二.(单位:万元)(1)分别将两种产品的利润表示为投资金额的函数关系式;(2)该企业已筹集到万元资金,并全部投入两种产品的生产,问:怎样分配这万元投资,才能使企业获得最大利润?其最大利润约为多少万元?
已知是定义在上的奇函数,且当时,.(1)求在上的解析式; (2) 证明在上是减函数;(3)当取何值时,在上有解.
若函数对任意恒有.(1)指出的奇偶性,并给予证明;(2)若函数在其定义域上单调递减,对任意实数,恒有成立,求的取值范围.
已知函数.(1)求的单调区间及极值;(2)若在上有最小值,求在上的最大值.