已知函数(1)当a=4,,求函数f(x)的最大值;(2)若x≥a , 试求f(x)+3 >0 的解集;(3)当时,f(x)≤2x – 2 恒成立,求实数a的取值范围.
(本小题满分14分)已知(为常数,且),设是首项为4,公差为2的等差数列. (1)求证:数列{}是等比数列;(2)若,记数列的前n项和为,当时,求;(3)若,问是否存在实数,使得中每一项恒小于它后面的项?若存在,求出实数的取值范围.
(本小题满分14分)在直角坐标系中,以为圆心的圆与直线相切.(1)求圆的方程;(2)已知、,圆内动点满足,求的取值范围.
(本小题满分14分)已知函数(1)若,点P为曲线上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程;(2)若函数上为单调增函数,试求满足条件的最大整数a.
(本小题满分14分)如图,在四棱锥中,底面是边长为的正方形,、分别为、的中点,侧面,且.(1)求证:∥平面;(2)求三棱锥的体积.
(本小题满分12分)已知关的一元二次函数,设集合 ,分别从集合和中随机取一个数和得到数对.(1)列举出所有的数对并求函数有零点的概率;(2)求函数在区间上是增函数的概率.