某城市为了解决人民路拥挤现象,政府决定建设高架公路,该高架公路两端的桥墩及引桥已建好,这两桥墩相距1280米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。(1)试写出关于的函数关系式;(2)政府至少还需投入多少万元资金才能启动此工程建设,此时新建桥墩有多少个?
已知函数f(x)=xm-且f(4)=. (1)求m的值; (2)判定f(x)的奇偶性; (3)判断f(x)在(0,+∞)上的单调性,并给予证明.
已知f(x)=x2+ax+3-a,若当x∈[-2,2]时,f(x)≥0恒成立,求a的取值范围.
已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2. (1)判断f(x)的奇偶性; (2)求证:f(x)是R上的减函数; (3)求f(x)在区间[-3,3]上的值域; (4)若∀x∈R,不等式f(ax2)-2f(x)<f(x)+4恒成立,求a的取值范围.
已知函数f(x)的定义域为{x|x∈R,且x≠0},对定义域内的任意x1、x2,都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0. (1)求证:f(x)是偶函数; (2)求证:f(x)在(0,+∞)上是增函数.
已知f(x)是偶函数,且f(x)在[0,+∞)上是增函数,如果f(ax+1)≤f(x-2)在x∈[,1]上恒成立,求实数a的取值范围.