某城市为了解决人民路拥挤现象,政府决定建设高架公路,该高架公路两端的桥墩及引桥已建好,这两桥墩相距1280米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为米的相邻两墩之间的桥面工程费用为万元。假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为万元。(1)试写出关于的函数关系式;(2)政府至少还需投入多少万元资金才能启动此工程建设,此时新建桥墩有多少个?
在中,、、分别是三内角A、B、C的对应的三边,已知 (1)求角C的大小; (2)满足的是否存在?若存在,求角A的大小.
在中,内角,,所对的边分别为,,,已知,=. (1)求的值; (2)若的面积为3,求的值.
设函数f(x)=ln+(a>0). (1)若函数f(x)在区间(2,4)上存在极值,求实数a的取值范围; (2)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围; (3)求证:当n∈N*且n≥2时,+++…+<ln n.
已知椭圆的离心率为,以原点为圆心,椭圆的长半轴为半径的圆与直线相切. (1)求椭圆标准方程; (2)已知点为动直线与椭圆的两个交点,问:在轴上是否存在点,使为定值?若存在,试求出点的坐标和定值,若不存在,说明理由.
已知函数在(1,+∞)上是增函数,且a>0. (1)求a的取值范围; (2)求函数在[0,+∞)上的最大值;