(本小题满分10分)已知等比数列 (I)求数列的通项公式; (II)设
【选修4-1:几何证明选讲】 如图,的外接圆的切线AE与BC的延长线相交于点E,的平分线与BC相交于点D,求证: (1); (2).
设函数,,若是函数的极值点. (1)求实数a的值; (2)当且时,恒成立,求整数n的最大值.
如图,过椭圆内一点的动直线与椭圆相交于M,N两点,当平行于x轴和垂直于x轴时,被椭圆所截得的线段长均为. (1)求椭圆的方程; (2)在平面直角坐标系中,是否存在与点A不同的定点B,使得对任意过点的动直线都满足?若存在,求出定点B的坐标,若不存在,请说明理由.
如图,在四棱锥中,底面ABCD是菱形,,侧面底面ABCD,并且,F为SD的中点. (1)求三棱锥的体积; (2)求直线BD与平面FAC所成角的正弦值.
某学生参加3个项目的体能测试,若该生第一个项目测试过关的概率为,第二个项目、第三个项目测试过关的概率分别为x,y(),且不同项目是否能够测试过关相互独立,记为该生测试过关的项目数,其分布列如下表所示: (1)求该生至少有2个项目测试过关的概率; (2)求的数学期望.