(本小题满分13分)设椭圆的左、右焦点分别为F1、F2,上顶点为A,在x轴上有一点B,满足且F1为BF2的中点.(Ⅰ)求椭圆 C的离心率;(Ⅱ)若过A、B、F2三点的圆恰好与直线相切,判断椭圆C和直线的位置关系.
(本小题满分12分)证明:.
六人按下列要求站一横排,分别有多少种不同的站法? (l)甲不站两端; (2)甲、乙不相邻; (3)甲、乙之间间隔两人; (4)甲不站左端,乙不站右端.
若的展开式的二项式系数和为128. (1)求的值; (2)求展开式中的常数项; (3)求展开式中二项式系数的最大项.
已知在时有极值0。 (1)求常数 a,b的值; (2)求f(x)的单调区间。 (3)方程f(x)=c在区间[-4,0]上有三个不同的实根时实数的范围。
在数列中,已知,且。 (1)用数学归纳法证明:; (2)求证.