(本小题满分12分)甲、乙两名射击运动员,甲射击一次命中10环的概率为,乙射击一次命中10环的概率为s,若他们各自独立地射击两次,设乙命中10环的次数为ξ,且ξ的数学期望Eξ=,表示甲与乙命中10环的次数的差的绝对值. (1)求s的值及的分布列, (2)求的数学期望.
函数, (1)若的定义域为R,求实数的取值范围. (2)若的定义域为[-2,1],求实数的值
已知函数 (1)若函数在的单调递减区间(—∞,2],求函数在区间[3,5]上的最大值. (2)若函数在在单区间(—∞,2]上是单调递减,求函数的最大值.
判断并利用定义证明f(x)=在(-∞,0)上的增减性.
设函数, (1)若函数在处与直线相切; ①求实数的值;②求函数上的最大值; (2)当时,若不等式对所有的都成立,求实数的取值范围.
如图,四棱锥的底面为矩形,且,,,(Ⅰ)平面与平面是否垂直?并说明理由;(Ⅱ)求直线与平面所成角的正弦值.