(本小题满分12分)如图,P—ABCD是正四棱锥,是正方体,其中 (1)求证:;(2)求PA与平面所成角的余弦值;
已知函数,其中为大于零的常数. (Ⅰ)当a=1时,求函数的单调区间, (Ⅱ)求函数在区间[1,2]上的最小值; (Ⅲ)求证:对于任意的n>1时,都有>成立.
已知定理:“若为常数,满足,则函数的图象关于点中心对称”.设函数,定义域为A. (1)试证明的图象关于点成中心对称; (2)当时,求证:; (3)对于给定的,设计构造过程:,…,.如果,构造过程将继续下去;如果,构造过程将停止.若对任意,构造过程可以无限进行下去,求a的值.
数列是递增的等比数列,且,. 求数列的通项公式; 若,求证数列是等差数列; 若,求的最大值.
如图,已知面,于D,。 (1)令,,试把表示为的函数,并求其最大值; (2)在直线PA上是否存在一点Q,使得?
若实数、、满足,则称比接近. (1)若比3接近0,求的取值范围; (2)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最小正周期、最小值和单调性(结论不要求证明).