设是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称, 且当x∈[ 2,3 ] 时, 222233.(1)求的解析式;(2)若在上为增函数,求的取值范围;(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.
(本小题满分14分)设,是函数的两个极值点,且,且.(1)当时,求的单调递减区间;(2)求证:为定值;(3)求的取值范围.
(本小题满分12分)如图是图的三视图,三棱锥中,,分别是棱,的中点.(1)求证:平面;(2)求三棱锥的体积.
(本小题满分12分)某学校就一问题进行内部问卷调查.已知该学校有男学生人,女学生人,教师人,用分层抽样的方法从中抽取人进行问卷调查.问卷调查的问题设置为“同意”、“不同意”两种,且每人都做一种选择.下面表格中提供了被调查人答卷情况的部分信息.(1)请完成此统计表;(2)根据此次调查,估计全校对这一问题持“同意”意见的人数;(3)从被调查的女学生中选取人进行访谈,求选到两名学生中恰有一人“同意”、一人“不同意”的概率.
(本小题满分12分)在中,角,,所对的边分别为,,,且满足.(1)求角的大小;(2)已知,的面积为,求边长的值.
(本小题满分12分)已知等比数列的公比,,,等差数列中,,其中.(1)求数列,的通项公式;(2)设数列,求数列的前项和.