(本小题满分16分)点,点A1(x1,0),A2(x,0),…,An(xn,0),…顺次为x轴上的点,其中x1=a(0<a≤1).对于任意n∈N*,点An、Bn、An+1构成以Bn为顶点的等腰三角形.(1)求数列{yn}的通项公式,并证明它为等差数列;(2)求证:x- x是常数,并求数列{ x}的通项公式;(3)上述等腰ΔAnBnAn+1中是否可能存在直角三角形,若可能,求出此时a的值;若不可能,请说明理由.
已知二阶矩阵M有特征值=8及对应的一个特征向量e1=,并且矩阵M对应的变换将点(-1,2)变换成(-2,4).(1)求矩阵M;(2)求矩阵M的另一个特征值及对应的一个特征向量e2的坐标之间的关系.
试从几何变换的角度求AB的逆矩阵.(1)A=,B=;(2)A=,B=.
已知O(0,0),A(2,1),O,A,B,C依逆时针方向构成正方形的四个顶点.(1)求B,C两点的坐标;(2)把正方形OABC绕点A按顺时针方向旋转45°得到正方形AB′C′O′,求B′,C′,O′三点的坐标.
已知变换T把平面上的点A(2,0),B(3,1)分别变换成点A′(2,1),B′(3,2),试求变换T对应的矩阵M.
已知:如图所示,△ABC内接于⊙O,过点A的切线交BC,的延长线于点P,D为AB的中点,DP交AC于M.求证:=.