(本小题满分14分)设数列的前项和为,且,其中为常数,且、0.(1)证明:数列是等比数列;(2)设数列的公比,数列满足,求数列的通项公式;(3)设,数列的前项和为,求证:当时,
出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗到红灯这一事件是相互独立的,并且概率都是 (1)求这位司机遇到红灯前,已经通过了两个交通岗的概率; (2)求这位司机在途中遇到红灯数ξ的期望和方差。
人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,试求下列事件的概率: (1)第次拨号才接通电话; (2)拨号不超过次而接通电话.
高三(1)班、高三(2)班每班已选出3名学生组成代表队,进行乒乓球对抗赛. 比赛规则是:①按“单打、双打、单打”顺序进行三盘比赛;②代表队中每名队员至少参加一盘比赛,不得参加两盘单打比赛. 已知每盘比赛双方胜出的概率均为 (Ⅰ)根据比赛规则,高三(1)班代表队共可排出多少种不同的出场阵容? (Ⅱ)高三(1)班代表队连胜两盘的概率是多少?
设数列满足,. (Ⅰ)求数列的通项; (Ⅱ)设,求数列的前项和.
已知数列{}中的相邻两项、是关于x的方程的两个根,且≤ (k =1,2,3,…). (I)求及(n≥4)(不必证明); (Ⅱ)求数列{}的前2n项和S2n.