已知数列的各项均是正数,其前项和为,满足,其中为正常数,且(1)求数列的通项公式;(2)设,数列的前项和为,求证:
(本小题满分10分)已知函数. (1)判断的奇偶性;(2)若,求的值.
(本小题满分12分)在平面直角坐标系xOy中,曲线y=x2-2x—3与两条坐标轴的三个交点都在圆C上.若圆C与直线x-y+a=0交于A,B两点,(1)求圆C的方程;(2)若,求a的值;(3)若 OA⊥OB,(O为原点),求a的值.
(本小题满分12分)在平面直角坐标系中,点到两定点F1和F2的距离之和为,设点的轨迹是曲线.(1)求曲线的方程; (2)若直线与曲线相交于不同两点、(、不是曲线和坐标轴的交点),以为直径的圆过点,试判断直线是否经过一定点,若是,求出定点坐标;若不是,说明理由.
(本小题满分12分)设命题:方程无实数根;命题:函数的值是.如果命题为真命题,为假命题,求实数的取值范围。
(本小题满分12分)△ABC中,已知三个顶点的坐标分别是A(,0),B(6,0),C(6,5),(1)求AC边上的高线BH所在的直线方程;(2)求的角平分线所在直线的方程。