已知椭圆C C : x 2 a 2 + y 2 b 2 = 1 的离心率为 3 3 ,过右焦点 F 的直线 l 与 C 相交于 A , B 两点,当 l 的斜率为1是,坐标原点 O 到直线 l 的距离为 2 2 . (Ⅰ)求 a , b 的值; (Ⅱ) C 上是否存在点 P ,使得当 l 绕 F 转到某一位置时,有 O P → = O A → + O B → 成立? 若存在,求出所有的P的坐标与 l 的方程;若不存在,说明理由.
(本小题满分14分) 已知数列的前项和是,且. (Ⅰ) 求证:数列是等比数列; (Ⅱ) 记,求的前项和的最大值及相应的值.
(本小题满分14分) 已知函数的最小正周期为. (Ⅰ)求的值; (Ⅱ)求函数的单调递增区间及其图象的对称轴方程.
(本小题满分15分) 已知,. (Ⅰ)若∥,求; (Ⅱ)若、的夹角为60º,求; (Ⅲ)若与垂直,求当为何值时,?
(本小题满分15分) 已知等比数列的前项和为,正数数列的首项为,且满足:.记数列前项和为. (Ⅰ)求的值; (Ⅱ)求数列的通项公式; (Ⅲ)是否存在正整数,且,使得成等比数列?若存在,求出的值,若不存在,说明理由.
(本小题满分14分) 在中角所对的边长分别为,且. (Ⅰ)求角的大小; (Ⅱ)若,求周长的最大值及相应的值.