设向量 a ⇀ = 4 cos α , sin α , b ⇀ = sin β , 4 cos β , c ⇀ cos β , - 4 sin β (1)若 a ⇀ 与 b ⇀ - 2 c ⇀ 垂直,求 tan α + β 的值;
(2)求 b ⇀ + c ⇀ 的最大值; (3)若 tan α t a n β = 16 ,求证: a ⇀ / / b ⇀ .
已知圆C:,直线L:(1)求证:对m,直线L与圆C总有两个交点;(2)设直线L与圆C交于点A、B,若|AB|=,求直线L的倾斜角;(3)设直线L与圆C交于A、B,若定点P(1,1)满足,求此时直线L的方程.
如图,在直三棱柱中,、分别是、的中点,点在上,。 求证:(1)EF∥平面ABC; (2)平面平面.
已知圆C过点(1,0),且圆心在轴的正半轴上,直线l:y=x-1被该圆所截得的弦长为2,求圆C的标准方程.
高等数学中经常用到符号函数,符号函数的定义为,试编写算法,画出流程图,写出程序输入x的值,输出y的值。
已知函数的定义域关于原点对称,且满足以下三个条件:①、是定义域中的数时,有;②是定义域中的一个数);③当时,.(1)判断与之间的关系,并推断函数的奇偶性;(2)判断函数在上的单调性,并证明;(3)当函数的定义域为时,①求的值;②求不等式的解集.