首页 / 高中数学 / 试卷选题

吉林省长春市高三第四次调研测试理科数学试卷

设全集,则图中阴影部分表示的集合为(   )

A. B. C. D.
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

如图,在复平面内,复数对应的向量分别是,则(    )

A.2 B.3 C. D.
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

已知三条不重合的直线和两个不重合的平面,下列命题正确的是(   )

A.若,则
B.若,且,则
C.若,则
D.若,且,则
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

设变量满足,则的最大值和最小值分别为(    )

A.1,-1 B.2,-2 C.1,-2 D.2,-1
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

按照下图的程序图计算,若开始输入的值为3,则最后输出的结果是(    )

A.6 B.21 C.5050 D.231
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

已知,则(    )

A.1 B.-1 C.2 D.-2
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

某中学高三年级从甲、乙两个班级各选出8名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生成绩的平均分是86,乙班学生成绩的中位数是83,则的值为(    )

A.9 B.10 C.11 D.13
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

曲线在点处的切线为,则直线上的任意点P与圆上的任意点Q之间的最近距离是(    )

A. B. C. D.2
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

双曲线的左、右焦点分别是,过作倾斜角为的直线交双曲线右支于点M,若垂直于x轴,则双曲线的离心率为(    )

A. B. C. D.
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

将一张边长为12cm的纸片按如图1所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥(底面是正方形,顶点在底面的射影为正方形的中心)模型,如图2放置. 若正四棱锥的正视图是正三角形(如图3),则正四棱锥的体积是(    )
  

A. B. C. D.
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

已知函数的零点分别为,则(   )

A. B. C. D.
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

设数列,则对任意正整数都成立的是(   )

A. B.
C. D.
来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

商场经营的某种袋装大米质量(单位:kg)服从正态分布,任取一袋大米,质量不足9.8kg的概率为          .(精确到0.0001)

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

已知向量,若在非零向量上的投影相等,且,则向量的坐标为       .

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

已知,经计算得,观察上述结果,可归纳出的一般结论为        .

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

设a,b为实数,关于x的方程的4个实数根构成以q为公比的等比数列,若,则的取值范围是       .

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

将函数的图形向右平移个单位后得到的图像,已知的部分图像如图所示,该图像与y轴相交于点,与x轴相交于点P、Q,点M为最高点,且的面积为.

(1)求函数的解析式;
(2)在中,分别是角A,B,C的对边,,且,求面积的最大值.

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

由某种设备的使用年限(年)与所支出的维修费(万元)的数据资料算得如下结果,.
(1)求所支出的维修费y对使用年限x的线性回归方程
(2)①判断变量x与y之间是正相关还是负相关;
②当使用年限为8年时,试估计支出的维修费是多少.
(附:在线性回归方程中,),其中为样本平均值.)

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,
.
(1)求证:
(2)若平面与平面所成的锐二面角的大小为,求线段的长度.

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.

(1)求椭圆C的标准方程;
(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

已知函数.
(1)当时,证明:当时,
(2)当时,证明:.

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

如图,是的内接三角形,PA是圆O的切线,切点为A,PB交AC于点E,交圆O于点D,PA=PE,,PD=1,DB=8.

(1)求的面积;
(2)求弦AC的长.

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

长为3的线段两端点A,B分别在x轴正半轴和y轴的正半轴上滑动,,点P的轨迹为曲线C.
(1)以直线AB的倾斜角为参数,求曲线C的参数方程;
(2)求点P到点D距离的最大值.

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知

已知实数,且,若恒成立.
(1)求实数m的最小值;
(2)若对任意的恒成立,求实数x的取值范围.

来源:2014届吉林省长春市高三第四次调研测试理科数学试卷
  • 题型:未知
  • 难度:未知