如图为椭圆C:的左、右焦点,D,E是椭圆的两个顶点,椭圆的离心率,的面积为.若点在椭圆C上,则点称为点M的一个“椭圆”,直线与椭圆交于A,B两点,A,B两点的“椭圆”分别为P,Q.(1)求椭圆C的标准方程;(2)问是否存在过左焦点的直线,使得以PQ为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.
(本小题满分14分) 如图,三棱锥中,,. (Ⅰ)求证:平面;(Ⅱ)若为线段上的点,设,问为何值时能使 直线平面; (Ⅲ)求二面角的大小.
(本小题满分12分) 已知函数,在函数图像上一点处切线的斜率为3. (Ⅰ)若函数在时有极值,求的解析式; (Ⅱ)若函数在区间,上单调递增,求的取值范围.
袋中装有大小、质地相同的8个小球,其中红色小球4个,蓝色和白色小球各 2个.某学生从袋中每次随机地摸出一个小球,记下颜色后放回.规定每次摸出红色小球记2分,摸出蓝色小球记1分,摸出白色小球记0分. (Ⅰ)求该生在4次摸球中恰有3次摸出红色小球的概率; (Ⅱ)求该生两次摸球后恰好得2分的概率; (Ⅲ)求该生两次摸球后得分的数学期望.
已知函数. (Ⅰ)求的最小正周期; (Ⅱ)求当时,的最大值及最小值; (Ⅲ)求的单调递增区间.
设函数的定义域为,若存在常数,使对一切实数均成立,则称为函数.给出下列函数: ①;②;③;④;⑤是定义在上的奇函数,且满足对一切实数、均有.其中是函数的序号为。