已知实数,且,若恒成立.(1)求实数m的最小值;(2)若对任意的恒成立,求实数x的取值范围.
因冰雪灾害,某柑橘基地果林严重收损,为此有关专家提出一种拯救果树的方案,该方案需分两年实施且相互独立。该方案预计第一年可以使柑橘产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.2、0.4、0.4;第二年可以使柑橘产量为第一年的1.5倍、1.25倍、1.0倍的概率分别是0.3、0.3、0.4,求两年后柑橘产量恰好达到灾前产量的概率.
( 已知三个函数其中第二个函数和第三个函数中的为同一个常数,且,它们各自的最小值恰好是方程的三个根. (Ⅰ) 求证:; (Ⅱ) 设是函数的两个极值点,求的取值范围.
如图,已知直线()与抛物线:和圆:都相切,是的焦点. (Ⅰ)求与的值; (Ⅱ)设是上的一动点,以为切点作抛物线的切线,直线交轴于点,以、为邻边作平行四边形,证明:点在一条定直线上; (Ⅲ)在(Ⅱ)的条件下,记点所在的定直线为,直线与轴交点为,连接交抛物线于、两点,求△的面积的取值范围.
( 已知与都是边长为2的等边三角形,且平面平面,过点作平面,且. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的大小.
等差数列中,,前项和为,等比数列各项均为正数,,且,的公比. (Ⅰ)求与; (Ⅱ)设,求数列的前项和.