北京东城区模拟考试高三数学(一)(理科)
空间点到平面的距离定义如下:过空间一点作平面的垂线,这个点和垂足之间的距离叫做这个点到这个平面的距离.已知平面,,两两互相垂直,点∈,点到,的距离都是,点是上的动点,满足到的距离是到到点距离的倍,则点的轨迹上的点到的距离的最小值是
A. | B. |
C. | D. |
来源:2011届北京东城区模拟考试高三数学(一)(理科)
从某地高中男生中随机抽取100名同学,将他们的体重(单位:kg)数据绘制成频率分布直方图(如图).由图中数据可知体重的平均值为 kg;若要从体重在[ 60 , 70),[70 ,80) , [80 , 90]三组内的男生中,用分层抽样的方法选取12人参加一项活动,再从这12人选两人当正负队长,则这两人身高不在同一组内的概率为
来源:2011届北京东城区模拟考试高三数学(一)(理科)
已知四棱锥的底面是菱形.,,,与交于点,,分别为,的中点.
(Ⅰ)求证:∥平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值
来源:2011届北京东城区模拟考试高三数学(一)(理科)
甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲面试合格的概率为,乙、丙面试合格的概率都是,且面试是否合格互不影响.
(Ⅰ)求至少有1人面试合格的概率;
(Ⅱ)求签约人数的分布列和数学期望.
来源:2011届北京东城区模拟考试高三数学(一)(理科)
已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)试用表示△的面积,并求面积的最大值.
来源:2011届北京东城区模拟考试高三数学(一)(理科)