[河南]2012届河南省焦作市高三第一次质量检测理科数学试卷
下列函数中,既是奇函数,又是增函数是( )
A.f(x)=x|x| | B.f(x)= -x3 |
C.f(x)= | D.f(x)= |
如图甲,在透明塑料制成的长方体ABCD—A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:
①水的部分始终呈棱柱状; ②水面四边形EFGH的面积不改变;
③棱A1D1始终与水面EFGH平行; ④当容器倾斜如图乙时,BE·BF是定值
其中正确说法是 ( )
A.①②③ | B.①③ | C.①②③④ | D.①③④ |
已知点P是双曲线右支上一点,,分别是双曲线的左、右焦点,I为的内心,若 成立,则双曲线的离心率为( )
A.4 | B. | C.2 | D. |
在公比为的等比数列中,与的等差中项是.
(Ⅰ)求的值;
(Ⅱ)若函数,,的一部分图像如图所示,,为图像上的两点,设,其中与坐标原点重合,,求的值.
甲、乙两位学生参加数学竞赛培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次.记录如下:
甲:82 81 79 78 95 88 93 84
乙:92 95 80 75 83 80 90 85
(1)画出甲、乙两位学生成绩的茎叶图,指出学生乙成绩的中位数;
(2)现要从中选派一人参加数学竞赛,从平均状况和方差的角度考虑,你认为派哪位学生参加合适?请说明理由;
(3)若将频率视为概率,对学生甲在今后的三次数学竞赛成绩进行预测,记这三次成绩中高于80分的次数为,求的分布列及数学期望.
如图,矩形ABCD中,AB=CD=2,BC=AD=。现沿着其对角线AC将D点向上翻折,使得二面角D—AC—B为直二面角。
(Ⅰ)求二面角A—BD—C平面角的余弦值。
(Ⅱ)求四面体ABCD外接球的体积;
已知椭圆的离心率,左、右焦点分别为,定点P,点在线段的中垂线上.
(1)求椭圆C的方程;
(2)设直线与椭圆C交于M、N两点,直线的倾斜角分别为,求证:直线过定点,并求该定点的坐标.
已知函数.
(I)求在上的最大值;
(II)若对任意的实数,不等式恒成立,求实数的取值范围;
(III)若关于的方程在上恰有两个不同的实根,求实数的取值范围.
在中,AB=AC,过点A的直线与其外接圆交 于点P,交BC延长线于点D。
(1)求证: ;
(2)若AC=3,求的值。
在平面直角坐标系xOy中,已知曲线C的参数方程为.以直角坐标系原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.点P为曲线C上的一个动点,求点P到直线l距离的最小值