北京市海淀区中考二模数学试卷
中国国家图书馆是亚洲最大的图书馆,截止到今年初馆藏图书达3119万册,其中古籍善本约有2000000册.2000000用科学记数法可以表示为( )
A. | B. | C. | D. |
我国古代把一昼夜划分成十二个时段,每一个时段叫一个时辰,古时与今时的对应关系(部分)如下表所示.天文兴趣小组的小明等4位同学从今夜23:00至明晨7:00将进行接力观测,每人两小时,观测的先后顺序随机抽签确定,小明在子时观测的概率为( )
古时 |
子时 |
丑时 |
寅时 |
卯时 |
今时 |
23:00~1:00 |
1:00~3:00 |
3:00~5:00 |
5:00~7:00 |
A. B. C. D.
如图,小明将几块六边形纸片分别减掉了一部分(虚线部分),得到了一个新多边形.若新多边形的内角和为540°,则对应的是下列哪个图形( )
A. | B. | C. | D. |
甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是
A.甲的方差比乙的方差小 |
B.甲的方差比乙的方差大 |
C.甲的平均数比乙的平均数小 |
D.甲的平均数比乙的平均数大 |
在学习“用直尺和圆规作一个角等于已知角”时,教科书介绍如下:( )
对于“想一想”中的问题,下列回答正确的是:
A.根据“边边边”可知,△≌△,所以∠=∠ |
B.根据“边角边”可知,△≌△,所以∠=∠ |
C.根据“角边角”可知,△≌△,所以∠=∠ |
D.根据“角角边”可知,△≌△,所以∠=∠ |
小明家端午节聚会,需要12个粽子.小明发现某商场正好推出粽子“买10赠1”的促销活动,即顾客每买够10个粽子就送1个粽子.已知粽子单价是5元/个,按此促销方法,小明至少应付钱( )
A.45元 | B.50元 | C.55元 | D.60元 |
如图,点A,B是棱长为1的正方体的两个顶点,将正方体按图中所示展开,则在展开图中A,B两点间的距离为( )
A. | B. | C. | D. |
如图所示,点Q表示蜜蜂,它从点P出发,按照着箭头所示的方向沿P→A→B→P→C→D→P的路径匀速飞行,此飞行路径是一个以直线l为对称轴的轴对称图形,在直线l上的点O处(点O与点P不重合)利用仪器测量了∠POQ的大小.设蜜蜂飞行时间为x,∠POQ的大小为y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A. |
B. |
C. |
D. |
如图,在一次测绘活动中,某同学站在点A观测放置于B,C两处的标志物,数据显示点B在点A南偏东75°方向20米处,点C在点A南偏西15°方向20米处,则点B与点C的距离为米 .
如图,在Rt△ABC中,∠C=90°,∠BAC=30°,BC=1,以B为圆心,BA为半径画弧交CB的延长线与点D,则的长为 .
五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子者为胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点,若黑子A的坐标为(7,5),则白子B的坐标为______________;为了不让白方获胜,此时黑方应该下在坐标为______________的位置处.
列方程或方程组解应用题:
小明坚持长跑健身.他从家匀速跑步到学校,通常需30分钟.某周日,小李与同学相约早上八点学校见,他七点半从家跑步出发,平均每分钟比平时快了40米,结果七点五十五分就到达了学校,求小明家到学校的距离.
已知,中,D是BC上的一点,且∠DAC=30°,过点D作ED⊥AD交AC于点E,
,.
(1)求证:AD=CD;
(2)若tanB=3,求线段的长.
小明和小腾大学毕业后准备自主创业,开一个小店卖腊汁肉夹馍.为了使产品更好地适合大众口味,他们决定进行一次抽样调查.在某商场门口将自己制作的肉夹馍免费送给36人品尝,并请每个人填写了一份调查问卷,以调查这种肉夹馍的咸淡程度是否适中.调查问卷如下所示:
经过调查,他们得到了如下36个数据:
BCBADACDB
CBCDCDCEC
CABEADECB
CBCEDEDDC
(1)小明用表格整理了上面的调查数据,写出表格中m和n的值;
(2)小腾根据调查数据画出了条形统计图,请你补全这个统计图;
(3)根据所调查的数据,你认为他们做的腊汁肉夹馍味道适中吗?(填“适中”或者“不适中”)
如图,Rt△ABC中,∠A=90°,以AB为直径的⊙O交BC于点D,点E在⊙O上, CE=CA,
AB,CE的延长线交于点F.
(1)求证:CE与⊙O相切;
(2)若⊙O的半径为3,EF=4,求BD的长.
阅读下面材料:小明研究了这样一个问题:求使得等式成立的x的个数.小明发现,先将该等式转化为,再通过研究函数的图象与函数的图象(如图)的交点,使问题得到解决.
(1)当k=1时,使得原等式成立的x的个数为_______;
(2)当0<k<1时,使得原等式成立的x的个数为_______;
(3)当k>1时,使得原等式成立的x的个数为_______.
参考小明思考问题的方法,解决问题:关于x的不等式只有一个整数解,求的取值范围.
在平面直角坐标系xOy中,抛物线与轴交于点A(0,3),与轴交于点B,C(点B在点C左侧).
(1)求该抛物线的表达式及点B,C的坐标;
(2)抛物线的对称轴与轴交于点D,若直线经过点D和点E,求直线DE的表达式;
(3)在(2)的条件下,已知点P(,0),过点P作垂直于轴的直线交抛物线于点M,交直线DE于点N,若点M和点N中至少有一个点在轴下方,直接写出的取值范围.
如图1,在中,AB=AC,∠ABC =,D是BC边上一点,以AD为边作,使AE=AD,+=180°.
(1)直接写出∠ADE的度数(用含的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.