湖南省株洲市高三教学质量统一检测一文科数学试卷
设数列{an}是等比数列,函数y=x2-x-2的两个零点是,则 =( )
A.2 | B.1 | C.-1 | D.-2 |
已知条件p:k=;条件q:直线y= kx+2与圆x2+y2=1相切,则p是q的( )
A.充分不必要条件 |
B.必要不充分条件 |
C.充分必要条件 |
D.既不充分也不必要条件 |
下列函数中,与函数y=-3|x|的奇偶性相同,且在(-∞,0)上
单调性也相同的是( )
A.y=- | B.y=log2|x| | C.y=1-x2 | D.y=x3-1 |
在长方体ABCD A1B1C1D1中,AB=BC=2,AA1=1,则BC1与平面BB1D1D所成角的正弦值为( )
A. | B. | C. | D. |
已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )
已知双曲线的一条渐近线的倾斜角的余弦值为,该双曲线上过一个焦点且垂直于实轴的弦长为,则双曲线的离心率等于( )
A. | B. | C. | D. |
在中,若角所对的三边成等差数列,给出下列结论:
①;②;③;④.
其中正确的结论是( )
A.①② | B.②③ | C.③④ | D.①④ |
记集合和集合表示的平
面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2内的概率
为 .
如图,在第一象限内,矩形ABCD的三个顶点A,B,C分别在函数y=的图像上,且矩形的边分别平行两坐标轴,若A点的纵坐标是2,则D点的坐标是
海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.
地区 |
A |
B |
C |
数量 |
50 |
150 |
100 |
(Ⅰ)求这6件样品中来自A,B,C各地区商品的数量;
(Ⅱ)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.
已知数列是各项均为正数的等差数列,其中,且成等比数列;数列的前项和为,满足.
(1)求数列、的通项公式;
(2)如果,设数列的前项和为,是否存在正整数,使得成立,若存在,求出的最小值,若不存在,说明理由.
如图,点分别是椭圆C:的左、右焦点,过点作轴的垂线,交椭圆的上半部分于点,过点作的垂线交直线于点.
(1)如果点的坐标为(4,4),求椭圆的方程;
(2)试判断直线与椭圆的公共点个数,并证明你的结论.