初中数学

下列运算及判断正确的是(  )

A.

﹣5× 1 5 ÷(﹣ 1 5 )×5=1

B.

方程(x 2+x﹣1) x +3=1有四个整数解

C.

若a×567 3=10 3,a÷10 3=b,则a×b= 10 3 567 6

D.

有序数对(m 2+1,|m|)在平面直角坐标系中对应的点一定在第一象限

来源:2018年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-04-09
  • 题型:未知
  • 难度:未知

解方程组 9 x 2 - 4 y 2 = 36 x - y = 2

来源:2016年湖北省黄石市中考数学试卷
  • 更新:2021-04-07
  • 题型:未知
  • 难度:未知

"通过等价变换,化陌生为熟悉,化未知为已知"是数学学习中解决问题的基本思维方式,例如:解方程 x - x = 0 ,就可以利用该思维方式,设 x = y ,将原方程转化为: y 2 - y = 0 这个熟悉的关于 y 的一元二次方程,解出 y ,再求 x ,这种方法又叫"换元法".请你用这种思维方式和换元法解决下面的问题.

已知实数 x y 满足 5 x 2 y 2 + 2 x + 2 y = 133 x + y 4 + 2 x 2 y 2 = 51 ,求 x 2 + y 2 的值.

来源:2020年内蒙古呼和浩特市中考数学试卷
  • 更新:2021-01-17
  • 题型:未知
  • 难度:未知

阅读理解:对于这类特殊的代数式可以按下面的方法分解因式:

理解运用:如果,那么,即有

因此,方程的所有解就是方程的解.

解决问题:求方程的解为  

来源:2020年湖南省常德市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

将关于 x 的一元二次方程 x 2 - px + q = 0 变形为 x 2 = px - q ,就可以将 x 2 表示为关于 x 的一次多项式,从而达到"降次"的目的,又如 x 3 = x · x 2 = x ( px - q ) = ,我们将这种方法称为"降次法",通过这种方法可以化简次数较高的代数式.根据"降次法",已知: x 2 - x - 1 = 0 ,且 x > 0 ,则 x 4 - 2 x 3 + 3 x 的值为 (    )

A.

1 - 5

B.

3 - 5

C.

1 + 5

D.

3 + 5

来源:2020年湖北省随州市中考数学试卷
  • 更新:2020-12-31
  • 题型:未知
  • 难度:未知

方程组的解是     

来源:2018年上海市中考数学试卷
  • 更新:2020-12-30
  • 题型:未知
  • 难度:未知

初中数学高次方程试题