将关于 x 的一元二次方程 x 2 - px + q = 0 变形为 x 2 = px - q ,就可以将 x 2 表示为关于 x 的一次多项式,从而达到"降次"的目的,又如 x 3 = x · x 2 = x ( px - q ) = … ,我们将这种方法称为"降次法",通过这种方法可以化简次数较高的代数式.根据"降次法",已知: x 2 - x - 1 = 0 ,且 x > 0 ,则 x 4 - 2 x 3 + 3 x 的值为 ( )
1 - 5
3 - 5
1 + 5
3 + 5
下列运算中正确的是( )
下列各式运算正确的是( )
由m(a+b+c)=ma+mb+mc,可得:(a+b)(a2﹣ab+b2)=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b3,即(a+b)(a2﹣ab+b2)=a3+b3…①我们把等式①叫做多项式乘法的立方和公式.下列应用这个立方和公式进行的变形不正确的是( )
若实数x、y、z满足(x﹣z)2﹣4(x﹣y)(y﹣z)=0,则下列式子一定成立的是( )
下列运算正确的是( )