为安全起见,妈妈为小明买了一块浮板辅助练习游泳.妈妈认为浮板能漂在水面上是因为它轻,小明认为妈妈的说法不对,科学的说法是因为浮板的密度比水的密度小.为验证自己的说法,小明设计了如下实验:
(1)找一根轻质均匀木棍、细绳(质量忽略不计)和一块标有“净重115g”字样的新肥皂,用如图所示的方法进行测量.测量时,使木棍在 位置平衡,记下A、B的位置,用刻度尺测出OA=10cm,OB﹣40cm,则浮板的质量为 kg.
(2)把浮板压入装满水的桶中刚好浸没,用塑料袋(质量忽略不计)收集溢出的水,用(1)所述方法测得溢出水的质量为4.6kg,则浮板的体积为 m3,密度为 kg/m3;用刻度尺测肥皂的长、宽、厚,算出肥皂的密度为1.33×l03kg/m3.浮板在水中漂浮而肥皂在水中下沉,说明小明的说法是正确的.小明用此浮板游泳时浮板受到的最大浮力为 N.
(3)根据这个实验结果,妈妈说原来用密度比水小的材料制成的物体才能漂浮在水上,这种说法 (选填“正确”或“不正确”).请举例说明 .
如图一均匀木板长12m,重200N,距A端3m处有一固定转轴O,另一端B用细绳悬吊着,使木板成水平状态.若细绳能承受的最大拉力为200N,细绳与木板的夹角为30°,欲使一个体重为600N的人在板上能安全行走,此人在板上行走的范围是多大?(求出离O点左侧多少米到离O点右侧多少米)
如图是液压汽车起重机从水中打捞重物的示意图.A 是动滑轮,B 是定滑轮,C 是卷扬机,D 是油缸,E是柱塞.作用在动滑轮上共三股钢丝绳,卷扬机转动使钢丝绳带动动滑轮上升提取重物,被打捞的重物体积V=0.5m3若在本次打捞前起重机对地面的压强p1=2.0×107Pa,当物体在水中匀速上升时起重机对地面的压强p2=2.375×107Pa,物体完全出水后起重机对地面的压强p3=2.5×107Pa.假设起重时柱塞沿竖直方向,物体出水前、后柱塞对吊臂的支撑力分别为N1和N2,N1与N2之比为19:24重物出水后上升的速度v=0.45m/s.吊臂、定滑轮、钢丝绳的重以及轮与绳的摩擦不计.(g取10N/kg)求:
(1)被打捞物体的重力;
(2)被打捞的物体浸没在水中上升时,滑轮组AB的机械效率;
(3)重物出水后,卷扬机牵引力的功率.
如图所示,一轻质杠杆支在支架上,OA=20cm, G1为边长是5cm的正方体,G2重为20N。当OC=l0cm时,绳子的拉力为 N,此时G1对地面的压强为2×104Pa。现用一水平拉力,使G2以 cm/s的速度向右匀速运动,经过12.5s后,可使G1对地面的压力恰好为0。
如图是某型号起重机从水中调起一重7.9t的钢锭,L1、L2分别为2m、6m。(g取10N/kg,ρ钢=7.9×103kg/m3) 求:
(1)钢锭全部浸在水中时受到的浮力是多大?
(2)起重机将钢锭调离水面后,起重机的作用力F1是多大?
(3)调离水面后钢锭又匀速上升了3m,这个过程中起重机做的功为3.95×105J,这时,起重机的机械效率是多少?
“低头族”长时间低头看手机,会引起颈部肌肉损伤.当头颅为竖直状态时,颈部肌肉的拉力为零,当头颅低下时,颈部肌肉会产生一定的拉力.为了研究颈部肌肉的拉力与低头角度大小的关系,我们可以建立一个头颅模型来模拟实验,如图甲所示.把人的颈椎简化成一个支点O,用1kg的头颅模型在重力作用下绕着这个支点O转动,A点为头颅模型的重心,B点为肌肉拉力作用点.将细线的一端固定在B点,用弹簧测力计拉着细线模拟测量肌肉的拉力,头颅模型在转动过程中,细线拉力的方向始终垂直于OB,如图乙所示.让头颅模型从竖直状态开始转动,通过实验记录出低头角度θ及细线拉力F的数据.如表:
低头角度θ/° |
0 |
15 |
30 |
45 |
60 |
细线拉力F/N |
0 |
7.3 |
14.0 |
20.2 |
25.0 |
(1)头颅模型质量为1kg,当低头角度为60°时,颈部肌肉实际承受的拉力是 N;如果真实头颅质量为8kg,当低头角度为60°时,颈部肌肉实际承受的拉力是 N.
(2)请解释:为什么低头角度越大,颈部肌肉的拉力会越大?答 .
(3)请你就预防和延缓颈椎损伤提出一个合理化的建议: .
如图所示,杠杆MN可绕O点转动,A、B、C、D是四个供人娱乐的吊环、B环到O点的距离为D环O点距离的一半,父子俩在吊环上做游戏,质量为40kg的儿子吊在B环上,父亲站在地面上抓着D环.(g=10N/kg)求:
⑴ 若不计杠杆和吊环的重以及转轴间的摩擦,为使杠杆在水平位置平衡,父亲要用多大的力拉吊环D?
⑵ 若父亲实际使用竖直向下的拉力为250N,在4s内将儿子匀速拉高0.5m,父亲要做多少功?做功的功率多大?
⑶ 父亲提升儿子的过程中,该器材的机械效率为多少?
如图所示,平直的薄板AB长1m,重力忽略不计,B端用细绳悬于天花板上,绳与水平方向夹角为30°,薄板始终保持水平.一辆重20N、功率为1W的电动小车,从A端以0.2m/s的速度向右匀速行驶4s,细绳恰好被拉断,求:
(1)小车行驶过程中牵引力做的功;
(2)小车运动时受到的阻力;
(3)细绳恰好被拉断时能承受的最大拉力.
如图所示轻质杠杆,把密度均为4.0×103kg/m3的甲、乙两个实心物体挂在A、B两端时,杠杆在水平位置平衡,若将甲物体浸没在水中,同时把支点从O移到O′时,杠杆又在新的位置平衡,若两次支点的距离O O′为OA的,求:甲、乙两个物体的质量之比.
一绝缘细绳的一端与可绕O点转动的轻质杠杆的E端相连,另一端绕过动滑轮D、定滑轮C,与滑动变阻器的滑片P相连;B为一可导电的轻质弹簧,如图所示接入电路中,一端通过绝缘绳固定在地面上,另一端与滑片P相连;一人站在地面上拉住与杠杆H端相连的细绳.已知电源电压为8V,灯泡标有"6V 3W"字样,人的质量为50kg,人与地面的接触面积为50cm 2,EO:HO=2:5.人对绳子拉力最小时,电流表示数为I1,且滑片刚好位于滑动变阻器的a端;人对绳子拉力最大时,电流表示数为I 2,且I 1:I 2=2:1,滑动变阻器的阻值与弹簧所受拉力的关系如下表所示:
R(Ω) |
0 |
2 |
4 |
6 |
8 |
10 |
12 |
14 |
… |
F(N) |
0.5 |
50.5 |
100.5 |
150.5 |
200.5 |
250.5 |
300.5 |
350.5 |
… |
不计杠杆、弹簧、滑片、细绳的重力,不计摩擦,不计弹簧电阻.整套装置始终处于平衡状态,物体A始终不离开地面.灯泡电阻不变,且不会被烧坏.g=10N/kg.求:
(1)人的拉力最大时,滑动变阻器接入电路的阻值是多少?
(2)物体A的质量是多少?
(3)人的拉力最大时,人对地面的压强是多少?
(4)当灯泡正常发光时,物体A对地面的压力是多少?
如图所示,将边长为10cm的正方体合金块,用细绳挂在轻质杠杆的A点处,在B点施加力F1=30N时,杠杆在水平位置平衡,合金块对水平地面的压强恰好为0。撤去F1,在B点施加力F2时,合金块对地面的压强为1.2×103Pa。(OB=3OA,g取10N/kg)
(1)画出F2的力臂。
(2)求合金块的质量。
(3)求F2的大小。
某中学“STS”课题小组到某工厂的锅炉车间进行实践活动,重点研究锅炉供水自动控制装置方面的问题,如图为冷水自控位置,小水箱与锅炉相连,当杠杆呈水平状态时,浮球受到2.5N竖直向上的浮力,塞子B刚好顶住自来水的进口.已知OC=25cm.OD=1cm,塞子B横截面积为1cm2,由此算出自来水对塞子B的压强为多大?
如图所示,质量为9kg,边长为5cm的正方体物块A置于水平地面上,通过细绳系于轻质杠杆BOC的B端,杠杆可绕O点转动,且CO=3BO,在C端用F=20N的力竖直向下拉杠杆,使杠杆在水平位置平衡,且细绳被拉直.(细绳重量不计,g取10N/kg)
求:(1)物体A的重力G1.
(2)B端细绳的拉力F拉;
(3)物体A对地面的压力F压;
(4)当F等于多少牛时,物体A对地面的压力恰好为零?
如图所示,一根轻质木杆,A端细线下所挂50N的重物静止在水平地面上。当在B点加竖直向下的力F=30N作用时,木杆恰能在水平位置处于平衡状态,此时细线竖直。已知OA=15cm,OB=5cm,OC=10cm,求:
(1)重物对水平地面的压力;
(2)在杠杆上找一点,在该点施加一个最小力,使重物对地面压力为0,在图中画出这个力并求出这个力的大小。
如图所示,起重机将一箱设备沿竖直方向匀速吊装到施工高台上,设备重4000 N,施工台距离地面的高度为3m。动滑轮上每段钢绳的拉力是2500 N。(取g=10N/kg)
求:(1)起重机的质量为8t,工作时用支架将汽车的轮胎支离开地面。如果地面能承受的最大压强是7×104 Pa,支架与地面接触的总面积是多少?
(2)起重臂OA长12m,且与水平方向夹角为30°。支撑臂与起重臂垂直,作用点为B,且OB=4m,求支撑臂给起重臂的支持力(忽略起重臂自重,cos30°≈0.87)。
(3)起重机做功的机械效率。