初中数学

直线l经过(2,3)和(-2,-1)两点,它还与x轴交于A点,与y轴交于C点,与经过原点
的直线OB交于第三象限的B点,且∠ABO=30°.求:

(1)点A、C的坐标;
(2)点B的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小明妈妈,每天需赶头班公交车,驶往终点站.离他家最近的公交站点离终点站15km,一天他妈妈从家步行到公交站点,恰好赶上头班公交车,上车后才发现有重要物品落在家中,急忙通知小明将物品送到终点站,这时妈妈已上车5min,小明马上取了东西,用时6min赶到妈妈上车的公交站点,乘坐刚好路过的出租车,沿公交车的线路驶往公交车的终点站,结果比公交车早4min到达,出租车与小明一起等候公交车.若公交车,出租车均视为全程匀速行驶,出租车的速度为60km/h(即:1km/min).设妈妈所乘公交车离开她上车的站点的时间为t(min),小明上车后,小明所乘出租车距妈妈上车的公交站点的路程为S1(km),妈妈所乘的公交车与小明所乘出租车之间相距的路程为S(km)
(1)求S1与t之间的函数关系式,并写出t的取值范围;
(2)写出11≤t≤30,S与t之间的函数关系式;
(3)公交车到达终点之前,经多长时间两车相距500m.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:

生产A种型号零件/件
生产B种型号零件/件
总时间/分
2
2
70
6
4
170

 
根据上表提供的信息,请回答如下问题:
(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?
(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;
(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

直线与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.

(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);
(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为
(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某地区为了鼓励市民节约用水,计划实行生活用水按阶梯式水价计费,每月用水量不超过10吨(含10吨)时,每吨按基础价收费;每月用水量超过10吨时,超过的部分每吨按调节价收费.例如,第一个月用水16吨,需交水费17.8元,第二个月用水20吨,需交水费23元.
(1)求每吨水的基础价和调节价;
(2)设每月用水量为n吨,应交水费为m元,写出m与n之间的函数解析式;
(3)若某月用水12吨,应交水费多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.
(1)根据题意,填写如表:

(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;
(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

盘锦红海滩景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b折,设游客为x人,门票费用为y元,非节假日门票费用(元)及节假日门票费用(元)与游客x(人)之间的函数关系如图所示.

(1)a=     ,b=     
(2)直接写出与x之间的函数关系式;
(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到红海滩景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

一个批发商销售成本为20元/千克的某产品,根据物价部门规定:该产品每千克售价不得超过90元,在销售过程中发现的售量y(千克)与售价x(元/千克)满足一次函数关系,对应关系如下表:

(1)求y与x的函数关系式;
(2)该批发商若想获得4000元的利润,应将售价定为多少元?
(3)该产品每千克售价为多少元时,批发商获得的利润w(元)最大?此时的最大利润为多少元?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示.

(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围);
(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

现正是闽北特产杨梅热销的季节,某水果零售商店分两批次从批发市场共购进杨梅40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.
(1)设第一、二次购进杨梅的箱数分别为a箱、b箱,求a,b的值;
(2)若商店对这40箱杨梅先按每箱60元销售了x箱,其余的按每箱35元全部售完.
①求商店销售完全部杨梅所获利润y(元)与x(箱)之间的函数关系式;
②当x的值至少为多少时,商店才不会亏本.
(注:按整箱出售,利润=销售总收入﹣进货总成本)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,一次函数的图象与反比例函数的图象交于A(﹣1,m)、B(n,﹣1)两点.

(1)求一次函数的解析式;
(2)求△AOB的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某工厂生产一种产品,当产量至少为10吨,但不超过55吨时,每吨的成本(万元/吨)与产量(吨)之间是一次函数关系,函数与自变量的部分对应值如下表:

(吨)
10
20
30
(万元/吨)
45
40
35

 
(1)求的函数关系式,并写出自变量的取值范围;
(2)当投入生产这种产品的总成本为1200万元时,求该产品的总产量;(注:总成本=每吨成本×总产量)
(3)市场调查发现,这种产品每月销售量(吨)与销售单价(万元/吨)之间满足如图所示的函数关系.该厂第一个月按同一销售单价卖出这种产品25吨,请求出该厂第一个月销售这种产品获得的利润.(注:利润=售价—成本)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

小慧和小聪沿图1中的景区公路游览.小慧乘坐车速为30km/h的电动汽车,早上7:00从宾馆出发,游玩后中午12:00回到宾馆.小聪骑车从飞瀑出发前往宾馆,速度为20km/h,途中遇见小慧时,小慧恰好游完一景点后乘车前往下一景点.上午10:00小聪到达宾馆.图2中的图象分别表示两人离宾馆的路程s(km)与时间t(h)的函数关系.试结合图中信息回答:

(1)小聪上午几点钟从飞瀑出发?
(2)试求线段AB、GH的交点B的坐标,并说明它的实际意义.
(3)如果小聪到达宾馆后,立即以30km/h的速度按原路返回,那么返回途中他几点钟遇见小慧?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地.甲乙两车距A地的路程y(千米)与乙车行驶时间x(小时)之间的函数图象如图所示.
请结合图象信息解答下列问题:

(1)直接写出a的值,并求甲车的速度;
(2)求图中线段EF所表示的y与x的函数关系式,并直接写出自变量x的取值范围;
(3)乙车出发多少小时与甲车相距15千米?直接写出答案.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知反比例函数与一次函数的图象在第一象限相交于点A(1,﹣k+4).

(1)试确定这两个函数的表达式;
(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学一次函数的最值解答题