初中数学

已知:o为坐标原点,∠ AOB=300  , ∠ABO=900 且A(2,0)求: 过A、B、O三点的二次函数解析式

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知如图,二次函数y="ax2" +bx+c的图像过A、B、C三点

观察图像写出A、B、C三点的坐标
求出二次函数的解析式

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知二次函的图象过点(0, 5)
⑴ 求m的值,并写出二次函数的关系式;
⑵ 求出二次函数图象的顶点坐标、对称轴.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知二次函数y=-x2 –x+4回答下列问题
(1)用配方法将其化成y="a" (x-h)2+k的形式
(2)指出抛物线的顶点坐标和对称轴
(3)当x取何值时,y随x增大而增大;
当x取何值时,y随x增大而减小?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

二次函数过A(-1,0) B(0,-3)两点,且对称轴是X=1求出它的解析式

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).

(1)根据图象你可获得哪些关于该公司的具体信息?(至少写出三条)
(2)还能提出其他相关的问题吗?若不能,说明理由;若能,进行解答,并与同伴交流.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,一位篮球运动员跳起投篮,球沿抛物线y=-x2+3.5运行,然后准确落入框内。已知篮框的中心离地面的距离为3.05米。求:

(1)球在空中运行的最大高度为多少米?
(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知二次函数,求证:它的图象与x轴总有两个交点。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

抛物线y=ax2+bx+c与直线y=x-2相交于(m,-2),(n,3)两点,且抛物线的对称轴为直线x=3,求抛物线的解析式。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

抛物线y=x2+x-k与直线y=-2x+1的交点的纵坐标为3。
(1)求抛物线的解析式
(2)求抛物线y=x2+x-k与直线y=-2x+1的另一个交点坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

利用函数的图象求下列方程的解:(1)x2+x-6=0;    (2)2x2-3x-5=0

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

2010年8月31日,全国绿化委员会、 国家林业局、 重庆市人民政府共同发起“绿化长江重庆行动”, 该行动就是要加快长江两岸造林绿化步伐,保护母亲河,促进入与自然和谐共生.某园艺公司从 9 月开始积极响应这一行动,进行植树造林.该公司第 x 月种植树木的亩数 y(亩)与 x 之间满足,(其中x从9月算起,即9月时 x=l,10月时x=2,…,且,x为正整数).但由于植树规模增加,每亩的收益会相应降低,每亩的收益 P(千元)与种植树木亩数 y(亩)之间的关系如下表:

亩数y(亩)
5
6
7
8

每亩收益P(千元/亩)
46
44
42
40

(1)请观察题中的表格,用所学过的一次函数、二次函数和反比例函数的有关知识求出 P与 y 之间所 满足的函数关系表达式:
(2)求该行动实施六个月来,第几月的总收益最大?此时每亩收益为多少?
(3)进入三月份,便是植树造林的“黄金期”,为此政府出台了一项激励措施:在“植树造林”过程中, 每月植树面积与二月份植树面积相同的部分,按二月份每亩收益进行结算;超出二月份植树面积 的部分,每亩收益将按二月份时每亩的收益再增加 0.6a%进行结算.这样,该公司三月份植树面积比二月份的植树面积增加了a%.另外,三月份时公司需对三月份之前种植的所有树木进行保养, 除去成本后政府给予每亩 5a%千元的保养补贴.最后,该公司三月份获得种植树木的收益和政府 保养补贴共 702 千元.请通过计算,估算出 a 的整数值.
(参考数据:)

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

[应用题]如图,一单杠高2.2米,两立柱之间的距离为1.6米,将一绳子的两端拴于立柱与铁杠结合处,绳子自然下垂呈抛物线状.

(1)如图(1)一身高为0.7米的小孩站在离立柱0.4米处,其头部刚好触到绳子,求绳子最低点到地面的距离;
(2)如图(2),为供孩子们打秋千,把绳子剪断后,中间系一块长为0.4米的木板.除掉系木板用去的绳子后,两边的绳子长正好各为2米,木板与地面平行.求这时木板离地面的距离(参考数据:≈1.8, ≈1.9, ≈2.1).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知:某租赁公司出租同一型号的设备40套,当每套月租金为270元时,恰好全部租出。在此基础上,每套月租金每增加10元,就少租出1套设备。而未租出的设备每月需支付各种费用每套20元。
设每套设备实际月租金为x元(x≥270元),月收益为y元(总收益=设备租金收入-未租出设备费用)
问题1: 求y与x的二次函数关系式
问题2: 当x为何值时,月收益最大?最大值是多少?
问题3: 当月租金分别为300元/每套和350元/每套时,月收益各是多少?根据月收益的计算结果,此时公司应该选择出租多少套设备更合适,请简要说明理

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

某宾馆有50个房客供游客居住,当每个房间的定价为每天180元时,房间会全部住满,当每个房间的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用。房价定为多少时,宾馆利润最大?

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值解答题