初中数学

如图所示,一个运动员推铅球,铅球在点A处出手,出手时球离地面约2.5m.铅球落地点在B处,铅球运行中在运动员前4m处(即OC=4)达到最高点,最高点高为3m.已知铅球经过的路线是抛物线,根据图示的直角坐标系信息,请你算出该运动员的成绩.(即求OB的长度)

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(2,0)、C(0,2)三点.
(1)求这条抛物线的解析式;
(2)如图,点P是第一象限内抛物线上的一个动点,若点P使四边形ABPC的面积最大,求点P的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数是常数).
(1)求证:不论为何值,该函数的图象与x轴没有公共点;
(2)把该函数的图象沿轴向下平移多少个单位长度后,得到的函数的图象与轴只有一个公共点?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数y=ax2+bx+c的图像如图所示,对称轴为直线x=1.有位学生写出了以下五个结论:

(1)ac>0; 
(2)方程ax2+bx+c=0的两根是x1=-1,x2=3;
(3)2a-b=0;
(4)当x>1时,y随x的增大而减小;
(5)3a+2b+c>0
则以上结论中不正确的有(  )

A.1个 B.2个 C.3个 D.4个
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知二次函数图象的顶点坐标为C(1,0),直线与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴上.

(1)求的值及这个二次函数的关系式;
(2)P为线段AB上的一个动点(点P与A、B不重合),过P作轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为,点P的横坐标为,求之间的函数关系式,并写出自变量的取值范围;
(3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

二次函数y=ax2+bx+c的图象过点(1,0)(0,3),对称轴x= -1。
(1)求函数解析式;
(2)若图象与x轴交于A、B(A在B左)与y轴交于C,顶点D,求四边形ABCD的面积。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是             cm2

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(1)已知一元二次方程的两根为,求证
(2)已知关于x的一元二次方程的两个不相等实数根满足,求a的值.
(3)已知抛物线与x轴交于A.B两点,且过点(-1,-1),设线段AB的长为d,当p为何值时,取得最小值,并求出最小值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.

(1)求二次函数的解析式;
(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM平分∠OFP;
(3)当△FPM是等腰直角三角形时,求P点的坐标.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

为了节能环保,新建的阜益路上路灯都是太阳能路灯.已知太阳能路灯售价为5000元/个,有甲、乙两经销商销售此产品.甲用如下方法促销:若购买路灯不超过100个,按原价付款;若一次购买100个以上,且购买的个数每增加一个,其价格减少10元,但太阳能路灯的售价不得低于3500元/个.乙一律按原价的80℅销售.现购买太阳能路灯x个,如果全部在甲商家购买,则所需金额为y1元;如果全部在乙商家购买,则所需金额为y2元.
(1)分别求出y1、y2与x之间的函数关系式;
(2)若政府投资120万元,最多能购买多少个太阳能路灯?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.
设每个房间每天的定价增加x元.求:
(1)房间每天的入住量y(间)关于x(元)的函数关系式;
(2)该宾馆每天的房间收费z(元)关于x(元)的函数关系式;
(3)该宾馆客房部每天的利润w(元)关于x(元)的函数关系式;当每个房间的定价为每天多少元时,w有最大值?最大值是多少?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

行驶中的汽车,在刹车后由于惯性的作用,还要向前方滑行一段距离才能停止,这段距离称为“刹车距离”,为了测定某种型号的汽车的刹车性能(车速不超过140 km/h),对这种汽车进行测试,测得数据如下表:

(1)以车速为x轴,以刹车距离为y轴,建立平面直角坐标系,根据上表对应值作出函数的大致图象;
(2)观察图象估计函数的类型,并确定一个满足这些数据的函数解析式;
(3)该型号汽车在国道发生了一次交通事故,现场测得刹车距离为46.5 m,推测刹车时的车速是多少?请问事故发生时,汽车是超速行驶还是正常行驶?

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数表达式是y = 60x-1.5x2,该型号飞机着陆后需滑行       m才能停下来.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知:如图,二次函数的图象与x轴交于A(﹣2,0),B(4,0)两点,且函数的最大值为9.

(1)求二次函数的解析式;
(2)设此二次函数图象的顶点为C,与y轴交点为D,求四边形ABCD的面积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知关于x的二次函数y=mx2﹣(m+2)x+2(m≠0).
(1)求证:此抛物线与x轴总有交点;
(2)若此抛物线与x轴总有两个交点的横坐标都是整数,求正整数m的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

初中数学二次函数在给定区间上的最值试题