某城市居民最低生活保障在2009年是200元,经过连续两年的增加,到2011年提高到338元,则该城市两年来最低生活保障的平均年增长率是 。
2011年我国西南地区发生了严重的干旱,高邮市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家族的用水量,结果如下表:
月用水量(吨) |
5 |
6 |
7 |
户数 |
2 |
6 |
2 |
则关于这10户家族的用水量,下列说法错误的是( )
A、众数 B、极差是2 C、平均数是6 D、方差是4
课堂上对关于x的方程:的解进行合作探究时,甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时方程的两根都不可能相等;丙同学发现无论m取什么正实数时方程的两根这和均为定值。
(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;
(2)请选择乙或丙同学的发现加以判断,并说明理由。
某楼盘准备以每平方米6000元的价格销售,由于国务院有关房地产的新政出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的价格销售。
(1)求平均每次下调的百分率;
(2)某人准备购买一套100平方米的住房,开发商对一次付款有以下两种优惠方案以供选择:①打9.5折销售;②不打折, 一次性送装修费每平方米240元,试问哪种方案更优惠?
为了获得某地区中学生视力状况的数据,小明同学在调查问卷中,提出如下四个问题:
A.在你看书时,眼睛与书本的距离; | B.你学习时使用的灯具; |
C.你喜欢穿的服装颜色; | D.你是否躺着看书. |
其中,你认为不恰当的问题是 ( )
阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:
(1)菱形的“二分线”可以是 。
(2)三角形的“二分线”可以是 。
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.
如图,A,B,C是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校,现规划修建居民小区D,其要求是:
(1)到学校的距离与其它小区到学校的距离一样;
(2)控制人口密度,有利于生态环境建设,试确定居民小区D的位置.
下列图形中,单独选用一种图形不能进行平面镶嵌的图形是
A 正三角形 B 正方形 C 正五边形 D 正六边形
有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)
下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为
A.55 | B.41 | C.42 | D.29 |
如图,有两个边长为2的正方形,将其中一个正方形沿对角线剪开成两个全等的等腰直角三角形,用这三个图片分别在网格备用图的基础上(只要再补出两个等腰直角三角形即可),分别拼出一个三角形、一个四边形、一个五边形、一个六边形.
甲、乙两人玩纸牌游戏,从足够数量的纸牌中取牌.规定每人最多两种取法,甲每次取4张或(4﹣k)张,乙每次取6张或(6﹣k)张(k是常数,0<k<4).经统计,甲共取了15次,乙共取了17次,并且乙至少取了一次6张牌,最终两人所取牌的总张数恰好相等,那么纸牌最少有 张.