一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋中随机摸出一球,记下颜色,然后把它放回口袋中.不断重复上述过程.小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.
A.45 | B.48 | C.50 | D.55 |
在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小龙通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则布袋中白色球的个数很可能是( )
A.16 B.6 C.18 D.24
某班共有41名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学解答问题,习惯用左手写字的同学被选中的概率是( )
A.0 | B. | C. | D.1 |
现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x、小明掷B立方体朝上的数字为x来确定点P(x,y),那么它们各掷一次所确定的点P落在双曲线y=上的概率为( )
A. B. C. D.
如图所示的两个转盘,每个转盘均被分成四个相同的扇形,转动转盘时指针落在每一个扇形内的机会均等,同时转动两个转盘,则两个指针同时落在标有奇数扇形内的概率为( )
A. | B. | C. | D. |
给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为【 】
A. | B. | C. | D. |
如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,则任意闭合其中两个开关,小灯泡发光的概率是( )
A. B. C. D.
小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:
抛掷次数 |
100 |
200 |
300 |
400 |
500 |
正面朝上的频数 |
53 |
98 |
156 |
202 |
244 |
若抛掷硬币的次数为1000,则“正面朝上”的频数最接近
A.20B.300C.500D.800
某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图,则符合这一结果的试验可能是
A.抛一枚硬币,出现正面朝上
B.掷一个正六面体的骰子,出现3点朝上
C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃
D.从一个装有2个红球1个黑球的袋子中任取一球,取到的是黑球
某射击运动员在同一条件下的射击成绩记录如下:
射击次数 |
20 |
80 |
100 |
200 |
400 |
1000 |
"射中九环以上"的次数 |
18 |
68 |
82 |
168 |
327 |
823 |
"射中九环以上"的频率(结果保留两位小数) |
0.90 |
0.85 |
0.82 |
0.84 |
0.82 |
0.82 |
根据频率的稳定性,估计这名运动员射击一次时"射中九环以上"的概率约是
A. |
0.90 |
B. |
0.82 |
C. |
0.85 |
D. |
0.84 |
一个布袋里有6只颜色不同的球,其中2个红球,4个白球,从布袋里任意摸出一个球,则摸出的球的红球的概率为( )
A. | B. | C. | D. |
同时投掷两个骰子,点数和为5的概率是( )
A. | B. | C. | D. |
在□4a□4空格□中,任意填上“+”或“-”,在所得到的所有代数式中,能构成完全平方式的概率是( )
A.1 | B. | C. | D. |
有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?( )
A. | B. | C. | D. |
一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为估计白球数,小刚向其中放入8个黑球摇匀后,从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球200次,其中44次摸到黑球,你估计盒中大约有白球( )
A.20个 | B.28个 | C.36个 | D.无法估计 |