某市举行“传承好家风”征文比赛,已知每篇参赛征文成绩记 分 ,组委会从1000篇征文中随机抽取了部分参赛征文,统计了它们的成绩,并绘制了如图不完整的两幅统计图表.
征文比赛成绩频数分布表
分数段 |
频数 |
频率 |
|
38 |
0.38 |
|
|
0.32 |
|
|
|
|
10 |
0.1 |
合计 |
1 |
请根据以上信息,解决下列问题:
(1)征文比赛成绩频数分布表中 的值是 ;
(2)补全征文比赛成绩频数分布直方图;
(3)若80分以上(含80分)的征文将被评为一等奖,试估计全市获得一等奖征文的篇数.
实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元)
0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.69
0.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89
研究小组的同学对以上数据进行了整理分析,得到下表:
分组 |
频数 |
|
2 |
|
3 |
|
1 |
|
|
|
4 |
|
2 |
|
|
统计量 |
平均数 |
中位数 |
众数 |
数值 |
0.84 |
|
|
(1)表格中: , , , ;
(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;
(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.
随着我国经济社会的发展,人民对于美好生活的追求越来越高.某社区为了了解家庭对于文化教育的消费情况,随机抽取部分家庭,对每户家庭的文化教育年消费金额进行问卷调查,根据调查结果绘制成两幅不完整的统计图表.
请你根据统计图表提供的信息,解答下列问题:
(1)本次被调查的家庭有 户,表中 ;
(2)本次调查数据的中位数出现在 组.扇形统计图中, 组所在扇形的圆心角是 度;
(3)这个社区有2500户家庭,请你估计家庭年文化教育消费10000元以上的家庭有多少户?
组别 |
家庭年文化教育消费金额 (元 |
户数 |
|
|
36 |
|
|
|
|
|
27 |
|
|
15 |
|
|
30 |
今年5月份,我市某中学开展争做“五好小公民”征文比赛活动,赛后随机抽取了部分参赛学生的成绩,按得分划分为 , , , 四个等级,并绘制了如下不完整的频数分布表和扇形统计图:
等级 |
成绩 |
频数(人数) |
|
|
4 |
|
|
|
|
|
16 |
|
|
6 |
根据以上信息,解答以下问题:
(1)表中的 ;
(2)扇形统计图中 , , 等级对应的扇形的圆心角为 度;
(3)该校准备从上述获得 等级的四名学生中选取两人做为学校“五好小公民”志愿者,已知这四人中有两名男生(用 , 表示)和两名女生(用 , 表示),请用列表或画树状图的方法求恰好选取的是 和 的概率.
某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾,下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).
某校七年级各班一周收集的可回收垃圾的质量的频数表
组别 |
频数 |
|
2 |
|
|
|
3 |
|
1 |
(1)求 的值;
(2)已知收集的可回收垃圾以0.8元 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?
为庆祝中国共产党成立100周年,某中学组织全校学生参加党史知识竞赛,从中任取20名学生的竞赛成绩进行统计,绘制了不完整的统计图表:
组别 |
成绩范围 |
频数 |
|
|
2 |
|
|
|
|
|
9 |
|
|
|
(1)分别求 , 的值;
(2)若把每组中各学生的成绩用这组数据的中间值代替(如 的中间值为 估计全校学生的平均成绩;
(3)从 组和 组的学生中随机抽取2名学生,用树状图或列表法求这2名学生都在 组的概率.
为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到 ;活动后,再次检查这部分学生的视力,结果如表所示.
分组 |
频数 |
|
2 |
|
3 |
|
5 |
|
8 |
|
17 |
|
5 |
(1)求所抽取的学生人数;
(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.
为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).
某校某年级360名学生一分钟跳绳次数的频数表
组别(次 |
频数 |
|
48 |
|
96 |
|
|
|
72 |
(1)求 的值;
(2)把频数分布直方图补充完整;
(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.
中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩 取整数,总分100分)作为样本进行整理,得到下列统计图表:
抽取的200名学生海选成绩分组表
组别 |
海选成绩 |
组 |
|
组 |
|
组 |
|
组 |
|
组 |
|
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示 组人数所占的百分比为 ,则 的值为 ,表示 组扇形的圆心角 的度数为 度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?
某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取 进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:
运动项目 |
频数(人数) |
羽毛球 |
30 |
篮球 |
a |
乒乓球 |
36 |
排球 |
b |
足球 |
12 |
请根据以上图表信息解答下列问题:
(1)频数分布表中的a= ,b= ;
(2)在扇形统计图中,“排球”所在的扇形的圆心角为 度;
(3)全校有多少名学生选择参加乒乓球运动?
今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成 , , , , , 六个等级,并绘制成如下两幅不完整的统计图表.
等级 |
得分 (分 |
频数(人 |
|
|
4 |
|
|
|
|
|
|
|
|
24 |
|
|
8 |
|
|
4 |
请根据图表提供的信息,解答下列问题:
(1)本次抽样调查样本容量为 ,表中: , ;扇形统计图中, 等级对应扇形的圆心角 等于 度;
(2)该校决定从本次抽取的 等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.
某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).
组别 |
单次营运里程“ ”(公里) |
频数 |
第一组 |
|
72 |
第二组 |
|
|
第三组 |
|
26 |
第四组 |
|
24 |
第五组 |
|
30 |
根据统计表、图提供的信息,解答下面的问题:
(1)①表中 ;②样本中“单次营运里程”不超过15公里的频率为 ;③请把频数分布直方图补充完整;
(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;
(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机 男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.
杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).
甲组杨梅树落果率频数分布表
落果率 |
组中值 |
频数(棵 |
|
|
12 |
|
|
4 |
|
|
2 |
|
|
1 |
|
|
1 |
(1)甲、乙两组分别有几棵杨梅树的落果率低于 ?
(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;
(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.
“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日 ,全球接种“新冠”疫苗的比例为 ;中国累计接种4.2亿剂,占全国人口的 .以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:
甲医院 |
乙医院 |
||||
年龄段 |
频数 |
频率 |
频数 |
频率 |
|
周岁 |
900 |
0.15 |
400 |
0.1 |
|
周岁 |
|
0.25 |
1000 |
0.25 |
|
周岁 |
2100 |
|
|
0.225 |
|
周岁 |
1200 |
0.2 |
1200 |
0.3 |
|
60周岁以上 |
300 |
0.05 |
500 |
0.125 |
|
(1)根据上面图表信息,回答下列问题:
①填空: , , ;
②在甲、乙两医院当天接种疫苗的所有人员中, 周岁年龄段人数在扇形统计图中所占圆心角为 ;
(2)若 、 、 三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.
为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋 ,与之相差大于 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:
收集数据 从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位: 如下:
甲:501 497 498 502 513 489 506 490 505 486
502 503 498 497 491 500 505 502 504 505
乙:505 499 502 491 487 506 493 505 499 498
502 503 501 490 501 502 511 499 499 501
整理数据 整理以上数据,得到每袋质量 的频数分布表.
质量 频数 机器 |
|
|
|
|
|
|
甲 |
2 |
2 |
4 |
7 |
4 |
1 |
乙 |
1 |
3 |
5 |
7 |
3 |
1 |
分析数据 根据以上数据,得到以下统计量.
统计量 机器 |
平均数 |
中位数 |
方差 |
不合格率 |
甲 |
499.7 |
501.5 |
42.01 |
|
乙 |
499.7 |
|
31.81 |
|
根据以上信息,回答下列问题:
(1)表格中的 , ;
(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.