初中数学

东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了如图不完整的统计图表.

作业情况

频数

频率

非常好

   

0.22

较好

68

  

一般

  

  

不好

40

  

请根据图表中提供的信息,解答下列问题:

(1)本次抽样共调查了多少名学生?

(2)将统计表中所缺的数据填在表中横线上;

(3)若该中学有1800名学生,估计该校学生作业情况"非常好"和"较好"的学生一共约多少名?

(4)某学习小组4名学生的作业本中,有2本"非常好"(记为 A 1 A 2 ) ,1本"较好"(记为 B ) ,1本"一般"(记为 C ) ,这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本中再抽取一本,请用"列表法"或"画树状图"的方法求出两次抽到的作业本都是"非常好"的概率.

来源:2020年山东省东营市中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为了倡导“节约用水,从我做起”,某市政府决定对该市直属机关200户家庭用水情况进行调查.市政府调查小组随机抽查了其中部分家庭一年的月平均用水量(单位:吨),调查中发现,每户家庭月平均用水量在 3 ~ 7 吨范围内,并将调查结果制成了如下尚不完整的统计表:

月平均用水量(吨 )

3

4

5

6

7

频数(户数)

4

a

9

10

7

频率

0.08

0.40

b

c

0.14

请根据统计表中提供的信息解答下列问题:

(1)填空: a =    b =    c =   

(2)这些家庭中月平均用水量数据的平均数是   ,众数是   ,中位数是   

(3)根据样本数据,估计该市直属机关200户家庭中月平均用水量不超过5吨的约有多少户?

(4)市政府决定从月平均用水量最省的甲、乙、丙、丁四户家庭中,选取两户进行“节水”经验分享.请用列表或画树状图的方法,求出恰好选到甲、丙两户的概率,并列出所有等可能的结果.

来源:2021年青海省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

为发展乡村经济,某村根据本地特色,创办了山药粉加工厂.该厂需购置一台分装机,计划从商家推荐试用的甲、乙两台不同品牌的分装机中选择.试用时,设定分装的标准质量为每袋 500 g ,与之相差大于 10 g 为不合格.为检验分装效果,工厂对这两台机器分装的成品进行了抽样和分析,过程如下:

[ 收集数据 ] 从甲、乙两台机器分装的成品中各随机抽取20袋,测得实际质量(单位: g ) 如下:

甲:501    497   498    502    513   489   506   490   505   486

      502    503   498    497    491   500   505   502   504   505

乙:505   499   502    491    487   506   493   505   499   498

      502    503   501    490    501   502   511   499   499    501

[ 整理数据 ] 整理以上数据,得到每袋质量 x ( g ) 的频数分布表.

质量

频数

机器

485 x < 490

490 x < 495

495 x < 500

500 x < 505

505 x < 510

510 x < 515

2

2

4

7

4

1

1

3

5

7

3

1

[ 分析数据 ] 根据以上数据,得到以下统计量.

统计量

机器

平均数

中位数

方差

不合格率

499.7

501.5

42.01

b

499.7

a

31.81

10 %

根据以上信息,回答下列问题:

(1)表格中的 a =    b =   

(2)综合上表中的统计量,判断工厂应选购哪一台分装机,并说明理由.

来源:2020年河南省中考数学试卷
  • 更新:2021-05-26
  • 题型:未知
  • 难度:未知

为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).

某校某年级360名学生一分钟跳绳次数的频数表

组别(次     )

频数

100 ~ 130

48

130 ~ 160

96

160 ~ 190

a

190 ~ 220

72

(1)求 a 的值;

(2)把频数分布直方图补充完整;

(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.

来源:2021年浙江省杭州市中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

某家庭记录了未使用节水龙头20天的日用水量数据(单位: m 3 ) 和使用了节水龙头20天的日用水量数据,得到频数分布表如下:

未使用节水龙头20天的日用水量频数分布表:

日用水量 / m 3

0 x < 0 . 1

0 . 1 x < 0 . 2

0 . 2 x < 0 . 3

0 . 3 x < 0 . 4

0 . 4 x < 0 . 5

频数

0

4

2

4

10

使用了节水龙头20天的日用水量频数分布表:

日用水量 / m 3

0 x < 0 . 1

0 . 1 x < 0 . 2

0 . 2 x < 0 . 3

0 . 3 x < 0 . 4

频数

2

6

8

4

(1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;

(2)估计该家庭使用节水龙头后,一年能节省多少立方米水?(一年按365天计算)

来源:2020年宁夏中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

某校开展了"禁毒"知识的宣传教育活动.为了解这次活动的效果,现随机抽取部分学生进行知识测试,并将所得数据绘制成不完整的统计图表.

等级

频数(人数)

频率

优秀

60

0.6

良好

a

0.25

合格

10

b

基本合格

5

0.05

合计

c

1

根据统计图表提供的信息,解答下列问题:

(1) a =    b =    c =   

(2)补全条形统计图;

(3)该学校共有1600名学生,估计测试成绩等级在合格以上(包括合格)的学生约有多少人?

(4)在这次测试中,九年级(3)班的甲、乙、丙、丁四位同学的成绩均为"优秀",现班主任准备从这四名同学中随机选取两名同学出一期"禁毒"知识的黑板报,请用列表法或画树状图法求甲、乙两名同学同时被选中的概率.

来源:2021年湖南省怀化市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:

类别

家庭藏书 m

学生人数

A

0 m 25

20

B

26 m 100

a

C

101 m 200

50

D

m 201

66

根据以上信息,解答下列问题:

(1)该调查的样本容量为   a =   

(2)在扇形统计图中,“ A ”对应扇形的圆心角为   °

(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.

来源:2018年江苏省徐州市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

我市于2021年5月 22 - 23 日在遂宁观音湖举行了“龙舟赛”,吸引了全国各地选手参加.现对某校初中1000名学生就“比赛规则”的了解程度进行了抽样调查(参与调查的同学只能选择其中一项),并将调查结果绘制出两幅不完整的统计图表,请根据统计图表回答下列问题:

类别

频数

频率

不了解

10

m

了解很少

16

0.32

基本了解

b

很了解

4

n

合计

a

1

(1)根据以上信息可知: a =    b =    m =    n =   

(2)补全条形统计图;

(3)估计该校1000名初中学生中“基本了解”的人数约有  人;

(4)“很了解”的4名学生是三男一女,现从这4人中随机抽取两人去参加全市举办的“龙舟赛”知识竞赛,请用画树状图或列表的方法说明,抽到两名学生均为男生和抽到一男一女的概率是否相同.

来源:2021年四川省遂宁市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:

17

18

16

13

24

15

28

26

18

19

22

17

16

19

32

30

16

14

15

26

15

32

23

17

15

15

28

28

16

19

对这30个数据按组距3进行分组,并整理、描述和分析如下.

频数分布表

组别

销售额

13 x < 16

16 x < 19

19 x < 22

22 x < 25

25 x < 28

28 x < 31

31 x < 34

频数

7

9

3

a

2

b

2

数据分析表

平均数

众数

中位数

20.3

c

18

请根据以上信息解答下列问题:

(1)填空: a =    b =    c =   

(2)若将月销售额不低于25万元确定为销售目标,则有  位营业员获得奖励;

(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.

来源:2018年江苏省南通市中考数学试卷
  • 更新:2021-05-25
  • 题型:未知
  • 难度:未知

为庆祝中国共产党建党100周年,某校开展了"党在我心中"党史知识竞赛,竞赛得分为整数,王老师为了解竞赛情况,随机抽取了部分参赛学生的得分并进行整理,绘制成不完整的统计图表.

组别

成绩 x (分 )

频数

A

75 . 5 x < 80 . 5

6

B

80 . 5 x < 85 . 5

14

C

85 . 5 x < 90 . 5

m

D

90 . 5 x < 95 . 5

n

E

95 . 5 x < 100 . 5

p

请你根据统计图表提供的信息解答下列问题:

(1)上表中的 m =    n =    p =   

(2)这次抽样调查的成绩的中位数落在哪个组?请补全频数分布直方图.

(3)已知该校有1000名学生参赛,请估计竞赛成绩在90分以上的学生有多少人?

(4)现要从 E 组随机抽取两名学生参加上级部门组织的党史知识竞赛, E 组中的小丽和小洁是一对好朋友,请用列表或画树状图的方法求出恰好抽到小丽和小洁的概率.

来源:2021年贵州省黔东南州中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).

甲组杨梅树落果率频数分布表

落果率

组中值

频数(棵     )

0 x < 10 %

5 %

12

10 % x < 20 %

15 %

4

20 % x < 30 %

25 %

2

30 % x < 40 %

35 %

1

40 % x < 50 %

45 %

1

(1)甲、乙两组分别有几棵杨梅树的落果率低于 20 %

(2)请用落果率的中位数或平均数,评价市农科所"用防雨布保护杨梅果实"的实际效果;

(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.

来源:2021年浙江省台州市中考数学试卷
  • 更新:2021-08-17
  • 题型:未知
  • 难度:未知

垃圾的分类回收不仅能够减少环境污染、美化家园,甚至能够变废为宝、节约资源.为增强学生垃圾分类意识,推动垃圾分类进校园,某中学组织全校1565名学生参加了“垃圾分类知识竞赛”(满分为100分).该校数学兴趣小组为了解全校学生竞赛分数情况,采用简单随机抽样的方法(即每名学生的竞赛分数被抽到的可能性相等的抽样方法)抽取部分学生的竞赛分数进行调查分析.

(1)以下三种抽样调查方案:

方案一:从七年级、八年级、九年级中指定部分学生的竞赛分数作为样本;

方案二:从七年级、八年级中随机抽取部分男生的竞赛分数以及在九年级中随机抽取部分女生的竞赛分数作为样本;

方案三:从全校1565名学生的竞赛分数中随机抽取部分学生的竞赛分数作为样本.

其中抽取的样本最具有代表性和广泛性的一种抽样调查方案是   (填写“方案一”、“方案二”或“方案三” )

(2)该校数学兴趣小组根据简单随机抽样方法获得的样本,绘制出如下统计表 ( 90 分及以上为“优秀”,60分及以上为“及格”,学生竞赛分数记为 x 分)

样本容量

平均分

及格率

优秀率

最高分

最低分

100

83.59

95 %

40 %

100

52

分数段

50 x < 60

60 x < 70

70 x < 80

80 x < 90

90 x 100

频数

5

7

18

30

40

结合上述信息解答下列问题:

①样本数据的中位数所在分数段为   

②全校1565名学生,估计竞赛分数达到“优秀”的学生有   人.

来源:2021年云南省中考数学试卷
  • 更新:2021-08-18
  • 题型:未知
  • 难度:未知

“此生无悔入华夏,来世再做中国人!”自疫情暴发以来,我国科研团队经过不懈努力,成功地研发出了多种“新冠”疫苗,并在全国范围内免费接种.截止2021年5月18日 16 : 20 ,全球接种“新冠”疫苗的比例为 18 . 29 % ;中国累计接种4.2亿剂,占全国人口的 29 . 32 % .以下是某地甲、乙两家医院5月份某天各年龄段接种疫苗人数的频数分布表和接种总人数的扇形统计图:

甲医院

乙医院

年龄段

频数

频率

频数

频率

18 - 29 周岁

900

0.15

400

0.1

30 - 39 周岁

a

0.25

1000

0.25

40 - 49 周岁

2100

b

c

0.225

50 - 59 周岁

1200

0.2

1200

0.3

60周岁以上

300

0.05

500

0.125

(1)根据上面图表信息,回答下列问题:

①填空: a =    b =    c =   

②在甲、乙两医院当天接种疫苗的所有人员中, 40 - 49 周岁年龄段人数在扇形统计图中所占圆心角为   

(2)若 A B C 三人都于当天随机到这两家医院接种疫苗,求这三人在同一家医院接种的概率.

来源:2021年四川省广元市中考数学试卷
  • 更新:2021-08-16
  • 题型:未知
  • 难度:未知

某校为了了解本校学生每天课后进行体育锻炼的时间情况,在5月份某天随机抽取了若干名学生进行调查,调查发现学生每天课后进行体育锻炼的时间都不超过100分钟,现将调查结果绘制成两幅尚不完整的统计图表.请根据统计图表提供的信息,解答下列问题:

组别

锻炼时间(分 )

频数(人)

百分比

A

0 x 20

12

20 %

B

20 < x 40

a

35 %

C

40 < x 60

18

b

D

60 < x 80

6

10 %

E

80 < x 100

3

5 %

(1)本次调查的样本容量是   ;表中 a =    b =   

(2)将频数分布直方图补充完整;

(3)已知 E 组有2名男生和1名女生,从中随机抽取两名学生,恰好抽到1名男生和1名女生的概率是   

(4)若该校学生共有2200人,请根据以上调查结果估计:该校每天课后进行体育锻炼的时间超过60分钟的学生共有多少人?

来源:2021年广西贵港市中考数学试卷
  • 更新:2021-07-22
  • 题型:未知
  • 难度:未知

4月23日是世界读书日,习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”某校响应号召,鼓励师生利用课余时间广泛阅读.该校文学社为了解学生课外阅读情况,抽样调查了部分学生每周用于课外阅读的时间,过程如下:

数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位: min )

30

60

81

50

40

110

130

146

90

100

60

81

120

140

70

81

10

20

100

81

整理数据:按如下分段整理样本数据并补全表格:

课外阅读时间 x ( min )

0 x < 40

40 x < 80

80 x < 120

120 x < 160

等级

D

C

B

A

人数

3

  

8

  

分析数据:补全下列表格中的统计量:

平均数

中位数

众数

80

  

  

得出结论:

(1)用样本中的统计量估计该校学生每周用于课外阅读时间的情况等级为  

(2)如果该校现有学生400人,估计等级为“ B ”的学生有多少名?

(3)假设平均阅读一本课外书的时间为160分钟,请你选择样本中的一种统计量估计该校学生每人一年(按52周计算)平均阅读多少本课外书?

来源:2018年江西省中考数学试卷
  • 更新:2021-05-24
  • 题型:未知
  • 难度:未知

初中数学频数(率)分布表解答题