初中数学

如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

(1)求直线的解析式;

(2)点为直线下方抛物线上的一点,连接.当的面积最大时,连接,点是线段的中点,点上的一点,点上的一点,求的最小值;

(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线经过点的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年重庆市中考数学试卷(b卷)
  • 更新:2021-01-02
  • 题型:未知
  • 难度:未知

如图,在平面直角坐标系中,抛物线轴交于两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.

(1)求直线的解析式;

(2)点为直线下方抛物线上的一点,连接.当的面积最大时,连接,点是线段的中点,点上的一点,点上的一点,求的最小值;

(3)点是线段的中点,将抛物线沿轴正方向平移得到新抛物线经过点的顶点为点.在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.

来源:2017年重庆市中考数学试卷(a卷)
  • 更新:2021-01-04
  • 题型:未知
  • 难度:未知

如图,抛物线轴交于两点,与轴交于点,点的坐标为

(1)求抛物线的解析式;

(2)在抛物线的对称轴上找一点,使的值最小.并求出点坐标;

(3)在第二象限内的抛物线上,是否存在点,使得的面积是面积的一半?若存在,求出点的坐标,若不存在,请说明理由.

来源:2017年西藏中考数学试卷
  • 更新:2021-01-03
  • 题型:未知
  • 难度:未知

初中数学轴对称-最短路线问题解答题