如图,△ABC中,边BC=12cm,高AD=6cm ,边长为x的正方形PQMN的一边在BC上,其余两个顶点分别在AB、AC上,则正方形边长x为( )
A.3cm B.4cm C.5cm D.6cm
如图,在平行四边形ABCD中, F是AD延长线上一点,连接BF交DC与点E,则图中相似三角形共有( )
A.0对 | B.1对 | C.2对 | D.3对 |
如图,在长方形ABCD中,AB=3,AD=5,点P在线段BC上运动,现将纸片折叠,使点A与点P重合,得折痕EF(点E、F为折痕与长方形边的交点),设BP=x,当点E落在线段AB上,点F落在线段AD上时,x的取值范围是( )
A.2≤x≤ 4 | B.1≤x≤4 | C.1 ≤x≤3 | D.2≤x≤ 3 |
如图,已知一张长方形纸片ABCD,AB∥CD ,AD=BC=1,AB=CD=5.在长方形ABCD的边AB上取一点M,在CD上取一点N,将纸片沿MN折叠,使MB与DN交于点K,得到△MNK.
(1)请你动手操作,判断△MNK的形状一定是 ;
(2)问△MNK的面积能否小于?试说明理由;
(3)如何折叠能够使△MNK的面积最大?请你用备用图探究可能出现的情况,并求最大值.
如图所示,折叠长方形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EF的长.
如图,把一张矩形纸片ABCD沿对角线BD折叠,使C点落在C',且BC'与AD交于E点,若则 °
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.
如图,平行四边形ABCD(两组对边平行且相等)的边长AB=4,BC=2,若把它放在直角坐标系内,使AB在x轴上,点C在y轴上,点A的坐标是(-3,0),求点B、C、D的坐标.
已知矩形长和宽分别为4和2,是否存在另一个矩形,它的周长和面积分别是已知矩形的?若存在请计算这个矩形的两边长,若不存在请说明理由.
下列命题是真命题的是( )
A.四边都相等的四边形是矩形 |
B.菱形的对角线相等 |
C.对角线互相垂直的四边形是正方形 |
D.对角线相等的菱形是正方形 |