初中数学

如图1,在△ABC中,E、D分别为AB、AC上的点,且ED//BC,O为DC中点,连结EO并延长交BC的延长线于点F,则有S四边形EBCD=SEBF.
(1)如图2,在已知锐角∠AOB内有一个定点P.过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转的过程中发现,当直线MN满足某个条件时,△MON的面积存在最小值.直接写出这个条件:_______________________.
(2)如图3,在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、()、(4、2),过点P的直线l与四边形OABC一组对边相交,将四边形OABC分成两个四边形,求其中以点O为顶点的四边形面积的最大值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

对于半径为r的⊙P及一个正方形给出如下定义:若⊙P上存在到此正方形四条边距离都相等的点,则称⊙P是该正方形的“等距圆”.如图1,在平面直角坐标系xOy中,正方形ABCD的顶点A的坐标为(2,4),顶点C、D在x轴上,且点C在点D的左侧.
(1)当r=时,
①在P1(0,-3),P2(4,6),P3,2)中可以成为正方形ABCD的“等距圆”的圆心的是_______________;
②若点P在直线上,且⊙P是正方形ABCD的“等距圆”,则点P的坐标为_______________;
(2)如图2,在正方形ABCD所在平面直角坐标系xOy中,正方形EFGH的顶点F的坐标为(6,2),顶点E、H在y轴上,且点H在点E的上方.
①若⊙P同时为上述两个正方形的“等距圆”,且与BC所在直线相切,求⊙P 在y轴上截得的弦长;
②将正方形ABCD绕着点D旋转一周,在旋转的过程中,线段HF上没有一个点能成为它的“等距圆”的圆心,则r的取值范围是_______________.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

中,为平面内一动点,,其中a,b为常数,且.将沿射线方向平移,得到,点A、B、D的对应点分别为点F、C、E.连接.
(1)如图1,若内部,请在图1中画出
(2)在(1)的条件下,若,求的长(用含的式子表示);
(3)若,当线段的长度最大时,则的大小为__________;当线段的长度最小时,则的大小为_______________(用含的式子表示).

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).
探究 如图1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:

(1)CQ与BE的位置关系是___  ___,BQ的长是____  ___dm;
(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=,tan37°=)
拓展 在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.
延伸 在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在矩形ABCD中,AB=4,BC=3,将矩形绕点C按顺时针方向旋转,使点B落在线段AC上,得矩形CEFG,边CD与EF交于点H,连接DG.
(1)CH=   
(2)求DG的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点.点E在CD上,且DE=2CE,连接BE.过点C作CF⊥BE,垂足是F,连接OF,则OF的长为         .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.
(2)在探究“等对角四边形”性质时:
①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;
②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形"ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C. 则A′C长度的最小值是       .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在矩形中,点A的坐标是(-2,1),点C的纵坐标是4,则B、C两点的坐标为(  )

A.()、()             B.()、(
C.()、()              D.() 、(

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在Rt△ABC中,∠B=90°,AC=60,AB=30。点D是AC上的动点,过D作DF⊥BC于F,再过F作FE//AC,交AB于E。设CD=x,DF=y.
(1)求y与x的函数关系式;
(2)当四边形AEFD为菱形时,求x的值;
(3)当△FED是直角三角形时,求x的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.
(1)①∠MPN=          
②求证:PM+PN=3a;
(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;
(3)如图3,点O是AD的中点,OG平分∠MON,判断四边形OMGN是否为特殊四边形?并说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,菱形ABCD中,AB=4,∠ABC=60°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为           .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知⊙O的半径为1,DE是⊙O的直径,过点D作⊙O的切线AD,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.
(1)求AD的长;
(2)BC是⊙O的切线吗?若是,给出证明;若不是,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,正方形的边长为2,以为圆心、为半径作弧于点,设弧与边围成的阴影部分面积为;然后以为对角线作正方形,又以为圆心、为半径作弧于点,设弧与边围成的阴影部分面积为;…,按此规律继续作下去,设弧与边围成的阴影部分面积为.则:(1)=      ;(2)=      

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图平行四边形ABCD中AB=AD=6,∠DAB=60度,F为AC上一点,E为AB中点,则EF+BF的最小值为        

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

初中数学圆内接四边形的性质试题